Features

* High Performance, Low Power AVR®32 32-Bit Microcontroller

— 210 DMIPS throughput at 150 MHz

— 16 KB instruction cache and 16 KB data caches

— Memory Management Unit enabling use of operating systems

— Single-cycle RISC instruction set including SIMD and DSP instructions

— Java Hardware Acceleration
¢ Pixel Co-Processor

— Pixel Co-Processor for video acceleration through color-space conversion

(YUV<->RGB), image scaling and filtering, quarter pixel motion compensation

¢ Multi-hierarchy bus system

— High-performance data transfers on separate buses for increased performance
¢ Data Memories

— 32KBytes SRAM
¢ External Memory Interface

— SDRAM, DataFlash™, SRAM, Multi Media Card (MMC), Secure Digital (SD),

— Compact Flash, Smart Media, NAND Flash

¢ Direct Memory Access Controller
— External Memory access without CPU intervention
¢ Interrupt Controller
— Individually maskable Interrupts
— Each interrupt request has a programmable priority and autovector address
¢ System Functions
— Power and Clock Manager
— Crystal Oscillator with Phase-Lock-Loop (PLL)
— Watchdog Timer
— Real-time Clock
¢ 6 Multifunction timer/counters
— Three external clock inputs, /0O pins, PWM, capture and various counting
capabilities
* 4 Universal Synchronous/Asynchronous Receiver/Transmitters (USART)
— 115.2 kbps IrDA Modulation and Demodulation
— Hardware and software handshaking
¢ 3 Synchronous Serial Protocol controllers
— Supports 12S, SPI and generic frame-based protocols
* Two-Wire Interface
- Sequential Read/Write Operations, Philips’ I2°C® compliant
¢ Liquid Crystal Display (LCD) interface
— Supports TFT displays
— Configurable pixel resolution supporting QCIF/QVGA/VGA/SVGA configurations.
* Image Sensor Interface
— 12-bit Data Interface for CMOS cameras
¢ Universal Serial Bus (USB) 2.0 High Speed (480 Mbps) Device
— On-chip Transceivers with physical interface
¢ 2 Ethernet MAC 10/100 Mbps interfaces
— 802.3 Ethernet Media Access Controller
— Supports Media Independent Interface (MIl) and Reduced MIl (RMII)
* 16-bit stereo audio bitstream DAC
— Sample rates up to 50 kHz
* On-Chip Debug System
— Nexus Class 3
— Full speed, non-intrusive data and program trace
— Runtime control and JTAG interface
¢ Package/Pins
— AT32AP7000: 256-ball CTBGA 1.0 mm pitch/160 GPIO pins
* Power supplies
- 1.65V t01.95V VDDCORE
- 3.0V to 3.6V VDDIO

ATMEL

Y 5

Y P

AVR®32 32-bit
Microcontroller

AT32AP7000

Preliminary

32003M-AVR32-09/09

1. Part Description

32003M-AVR32-09/09

The AT32AP7000 is a complete System-on-chip application processor with an AVR32 RISC
processor achieving 210 DMIPS running at 150 MHz. AVR32 is a high-performance 32-bit RISC
microprocessor core, designed for cost-sensitive embedded applications, with particular empha-
sis on low power consumption, high code density and high application performance.

AT32AP7000 implements a Memory Management Unit (MMU) and a flexible interrupt controller
supporting modern operating systems and real-time operating systems. The processor also
includes a rich set of DSP and SIMD instructions, specially designed for multimedia and telecom
applications.

AT32AP7000 incorporates SRAM memories on-chip for fast and secure access. For applica-
tions requiring additional memory, external 16-bit SRAM is accessible. Additionally, an SDRAM
controller provides off-chip volatile memory access as well as controllers for all industry standard
off-chip non-volatile memories, like Compact Flash, MultiMedia Card (MMC), Secure Digital
(SD)-card, SmartCard, NAND Flash and Atmel DataFlash™.

The Direct Memory Access controller for all the serial peripherals enables data transfer between
memories without processor intervention. This reduces the processor overhead when transfer-
ring continuous and large data streams between modules in the MCU.

The Timer/Counters includes three identical 16-bit timer/counter channels. Each channel can be
independently programmed to perform a wide range of functions including frequency measure-
ment, event counting, interval measurement, pulse generation, delay timing and pulse width
modulation.

AT32AP7000 also features an onboard LCD Controller, supporting single and double scan
monochrome and color passive STN LCD modules and single scan active TFT LCD modules.
On monochrome STN displays, up to 16 gray shades are supported using a time-based dither-
ing algorithm and Frame Rate Control (FRC) method. This method is also used in color STN
displays to generate up to 4096 colors.

The LCD Controller is programmable for supporting resolutions up to 2048 x 2048 with a pixel
depth from 1 to 24 bits per pixel.

A pixel co-processor provides color space conversions for images and video, in addition to a
wide variety of hardware filter support

The media-independent interface (MIl) and reduced MIl (RMII) 10/100 Ethernet MAC modules
provides on-chip solutions for network-connected devices.

Synchronous Serial Controllers provide easy access to serial communication protocols, audio
standards like 12S and frame-based protocols.

The Java hardware acceleration implementation in AVR32 allows for a very high-speed Java
byte-code execution. AVR32 implements Java instructions in hardware, reusing the existing
RISC data path, which allows for a near-zero hardware overhead and cost with a very high
performance.

The Image Sensor Interface supports cameras with up to 12-bit data buses.

PS2 connectivity is provided for standard input devices like mice and keyboards.

AIMEL 2

Y 5

AT32AP7000 integrates a class 3 Nexus 2.0 On-Chip Debug (OCD) System, with non-intrusive
real-time trace, full-speed read/write memory access in addition to basic runtime control.

The C-compiler is closely linked to the architecture and is able to utilize code optimization fea-
tures, both for size and speed.

AIMEL 3

32003M-AVR32-09/09 I ©

2. Signals Description

The following table gives details on the signal name classified by peripheral. The pinout multi-
plexing of these signals is given in the Peripheral Muxing table in the Peripherals chapter.

Table 2-1. Signal Description List

Active
Signal Name Function Type Level Comments
Power

AVDDPLL PLL Power Supply Power 1.65t01.95V
AvVDDUSB USB Power Supply Power 1.65t01.95V
AVDDOSC Oscillator Power Supply Power 1.65t01.95V
VDDCORE Core Power Supply Power 1.65t01.95V
VDDIO 1/0O Power Supply Power 3.0 to 3.6V
AGNDPLL PLL Ground Ground
AGNDUSB USB Ground Ground
AGNDOSC Oscillator Ground Ground
GND Ground Ground

Clocks, Oscillators, and PLLs
XINO, XIN1, XIN32 Crystal 0, 1, 32 Input Analog
igggéxoun Crystal 0, 1, 32 Output Analog
PLLO, PLLA PLL 0,1 Filter Pin Analog

JTAG
TCK Test Clock Input
TDI Test Data In Input
TDO Test Data Out Output
T™MS Test Mode Select Input
TRST_N Test Reset Input Low
Auxiliary Port - AUX

MCKO Trace Data Output Clock Output
MDOO - MDO5 Trace Data Output Output
MSEQOO - MSEO1 Trace Frame Control Output
EVTI_N Event In Input Low

AIMEL 4

32003M-AVR32-09/09 I ©

Table 2-1. Signal Description List
Active
Signal Name Function Type Level Comments
EVTO_N Event Out Output Low
Power Manager - PM
GCLKO - GCLK4 Generic Clock Pins Output
OSCEN_N Oscillator Enable Input Low
RESET_N Reset Pin Input Low
WAKE_N Wake Pin Input Low
External Interrupt Controller - EIC
EXTINTO - EXTINT3 External Interrupt Pins Input
NMI_N Non-Maskable Interrupt Pin Input Low
AC97 Controller - AC97C
SCLK AC97 Clock Signal Input
SDI AC97 Receive Signal Output
SDO AC97 Transmit Signal Output
SYNC AC97 Frame Synchronization Signal Input

Audio Bitstream DAC - ABDAC

DATAO - DATA1

D/A Data Out

Output

DATANO - DATAN1

D/A Inverted Data Out

Output

Ethernet MAC - MACBO, MACB1

COL Collision Detect Input
CRS Carrier Sense and Data Valid Input
MDC Management Data Clock Output
MDIO Management Data Input/Output /0
RXDO - RXD3 Receive Data Input
RX_CLK Receive Clock Input
RX_DV Receive Data Valid Input
RX_ER Receive Coding Error Input
SPEED Speed Output
TXDO - TXD3 Transmit Data Output

32003M-AVR32-09/09

ATMEL

Table 2-1. Signal Description List
Active
Signal Name Function Type Level Comments
TX_CLK Transmit Clock or Reference Clock Input
TX_EN Transmit Enable Output
TX_ER Transmit Coding Error Output
External Bus Interface - EBI
PXO0 - PX53 I/0O Controlled by EBI IO
ADDRO - ADDR25 Address Bus Output
CAS Column Signal Output Low
CFCE1 Compact Flash 1 Chip Enable Output Low
CFCE2 Compact Flash 2 Chip Enable Output Low
CFRNW Compact Flash Read Not Write Output
DATAO - DATA31 Data Bus I/0
NANDOE NAND Flash Output Enable Output Low
NANDWE NAND Flash Write Enable Output Low
NCSO0 - NCS5 Chip Select Output Low
NRD Read Signal Output Low
NWAIT External Wait Signal Input Low
NWEO Write Enable 0 Output Low
NWEH1 Write Enable 1 Output Low
NWES3 Write Enable 3 Output Low
RAS Row Signal Output Low
SDA10 SDRAM Address 10 Line Output
SDCK SDRAM Clock Output
SDCKE SDRAM Clock Enable Output
SDWE SDRAM Write Enable Output Low

Image Sensor Interface - ISI

DATAO - DATA11 Image Sensor Data Input
HSYNC Horizontal Synchronization Input
PCLK Image Sensor Data Clock Input

32003M-AVR32-09/09

ATMEL

Y 5

Table 2-1. Signal Description List
Active
Signal Name Function Type Level Comments
VSYNC Vertical Synchronization Input
LCD Controller - LCDC
CC LCD Contrast Control Output
DATAO - DATA23 LCD Data Bus Input
DVAL LCD Data Valid Output
GPLO - GPL7 LCD General Purpose Lines Output
HSYNC LCD Horizontal Synchronization Output
MODE LCD Mode Output
PCLK LCD Clock Output
PWR LCD Power Output
VSYNC LCD Vertical Synchronization Output
MultiMedia Card Interface - MCI
CLK Multimedia Card Clock Output
CMDO - CMDA1 Multimedia Card Command I/O
DATAO - DATA7 Multimedia Card Data I/0

Parallel Input/Output - PIOA, PIOB, PIOC, PIOD, PIOE

PAO - PA31 Parallel I/O Controller PIOA /0

PBO - PB30 Parallel I/0O Controller PIOB /0

PCO - PC31 Parallel I/0O Controller PIOC I/0

PDO - PD17 Parallel /0O Controller PIOD I/0

PEO - PE26 Parallel I/O Controller PIOE I/0

PS2 Interface - PSIF
CLOCKO - CLOCK1 PS2 Clock Input
DATAOQ - DATA1 PS2 Data I/0
Serial Peripheral Interface - SPI0, SPI1

MISO Master In Slave Out I/0
MOSI Master Out Slave In 1/0
NPCSO0 - NPCS3 SPI Peripheral Chip Select 110 Low

32003M-AVR32-09/09

ATMEL

Y 5

Table 2-1. Signal Description List
Active

Signal Name Function Type Level Comments
SCK Clock Output

Synchronous Serial Controller - SSC0, SSC1, SSC2
RX_CLOCK SSC Receive Clock /0
RX_DATA SSC Receive Data Input
RX_FRAME_SYNC SSC Receive Frame Sync I/0
TX_CLOCK SSC Transmit Clock I/0
TX_DATA SSC Transmit Data Output
TX_FRAME_SYNC SSC Transmit Frame Sync /10

DMA Controller - DMACA

DMARQO - DMARQ3

DMA Requests

Input

Timer/Counter - TIMERO, TIMER1

AO Channel 0 Line A 1/0
A1l Channel 1 Line A I/0
A2 Channel 2 Line A 1/0
BO Channel 0 Line B I/0
B1 Channel 1 Line B 1/0
B2 Channel 2 Line B I/0
CLKO Channel 0 External Clock Input Input
CLKA1 Channel 1 External Clock Input Input
CLK2 Channel 2 External Clock Input Input
Two-wire Interface - TWI
SCL Serial Clock I/0
SDA Serial Data I/0
Universal Synchronous Asynchronous Receiver Transmitter - USARTO0, USART1, USART2, USART3

CLK Clock I/0
CTS Clear To Send Input
RTS Request To Send Output
RXD Receive Data Input

32003M-AVR32-09/09

ATMEL

Y 5

Table 2-1. Signal Description List

Active
Signal Name Function Type Level Comments

TXD Transmit Data Output

Pulse Width Modulator - PWM

PWMO - PWM3 PWM OQutput Pins Output

USB Interface - USBA

HSDM High Speed USB Interface Data - Analog
FSDM Full Speed USB Interface Data - Analog
HSDP High Speed USB Interface Data + Analog
FSDP Full Speed USB Interface Data + Analog

Connected to a 6810 Ohm + 0.5%
VBG USB bandgap Analog resistor to gound and a 10 pF
capacitor to ground.

AIMEL 9

32003M-AVR32-09/09 I ©

3. Power Considerations

3.1 Power Supplies

The AT32AP7000 has several types of power supply pins:

VDDCORE pins: Power the core, memories, and peripherals. Voltage is 1.8V nominal.
VDDIO pins: Power I/O lines. Voltage is 3.3V nominal.

VDDPLL pin: Powers the PLL. Voltage is 1.8V nominal.

VDDUSB pin: Powers the USB. Voltage is 1.8V nominal.

VDDOSC pin: Powers the oscillators. Voltage is 1.8V nominal.

The ground pins GND are common to VDDCORE and VDDIO. The ground pin for VDDPLL is
GNDPLL, and the GND pin for VDDOSC is GNDOSC.

See "Electrical Characteristics” on page 930 for power consumption on the various supply pins.

3.2 Power Supply Connections

Special considerations should be made when connecting the power and ground pins on a PCB.
Figure 3-1 shows how this should be done.

Figure 3-1. Connecting analog power supplies

Ch4

[0.10u
AVDDUSB]
AVDDPLL I
AVDDOSC
AGNDUSB \
AGNDPLL l: <, o 1ou
AGNDOSC l

i —

VDDCORE ® O VCC_1V8

AIMEL 10

32003M-AVR32-09/09 I ©

AT32AP7000

3.3 Package and PinoutAVR32AP7000
Figure 3-2. 256 CTBGA Pinout
Ball A1

4 1234567 8 910111213141516 161514131211109 8 7 6 5 4 3 2 1
Al @ O 000O0OO0OO0OO0OO0OO0OO0OOoOOoOOoOOoOOoO |A
B OO0 0 O0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0O |B
C OO0 O0O0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0O |C
D OO0 0O O0OO0OO0OO0OO0OO0OO0OO0OO0OOoOO0OOoOOoO |D
E OO0 0O O0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0 |E
F OO0 0O O0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0 |F
H OO0 0O O0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0oO |H
J OO0 OO O0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0 |J
K OO0 0O O0OO0OO0OO0OO0OO0OO0OO0OO0OOoOOoOOo0 o |K
L OO0 0O O0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0 |L
M AVR32 O 0000O0O0O0OO0OO0OO0OO0OO0OO0OOoOOoO |M
N OO0 0O OO0 O0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0oO |N
P OO0 0O O0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0O |P
R OO0 0O O0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0O |R
T OO0 0O O0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0O |T

Table 3-1. CTBGA256 Package Pinout A1..T8

1 2 3 4 5 6 7 8

A| VDDIO PE15 PE13 PE11 PEO7 PEO2 AGNDPLL OSCEN_N

B| GNDIO PE16 PE12 PEO9 PEO4 PLLO AVDDOSC PC30

C| PDoO1 PDO00 PE14 PE10 PEO6 PEOO PLLA PC31

D| PE17 PE18 PDO02 PEO8 PEO3 GND AGNDOSC PC29

E| PX48 PX50 PX49 PX47 PEO5 PEO1 XOuUT32 PC28

F| PX32 PX00 PX33 VDDIO PX51 AVDDPLL XINO PC27

G| PXo4 VDDCORE PX05 PX03 PX02 PX01 XOUTO PC26

H| PDO6 VDDIO PDO0O7 PDO05 PD04 PDO03 GND XIN32

J| TRST_N TMS TDI TCK TDO PDO09 PDO08 EVTI_N

K| PA0O5 PAO1 PAO2 PAOO RESET_N PAO3 PAO4 HSDP

L| PAO9 PB25 VDDIO PAO8 GND PB24 AGNDUSB VDDCORE

M PA14 PA11 PA13 PA10 PA12 VDDIO VDDIO GND

N| PA18 PA16 PA17 PA15 PD14 GND FSDM VBG

P| PA20 PA19 PA21 PD11 PD16 XOUT1 GND PA25

R| PA22 PD10 PA23 PD13 PD17 AVDDUSB HSDM PA26

T| vDDIO GND PA24 PD12 PD15 XIN1 FSDP VDDIO

32003M-AVR32-09/09

ATMEL

Y 5

11

Table 3-2. CTBGA256 Package Pinout A9..T16
9 10 11 12 13 14 15 16

A| PC23 PAO6 PB21 PB16 PB13 PB11 GND VDDIO
B| PC25 PC19 PB23 PB18 PB14 PB10 PC17 PC16
C| PC24 PAO7 PB22 PB17 PB12 PB09 PB07 PB08
D| PC22 PC18 PB20 PB15 PB03 PBO5 PB04 PB06
E| vDDIO GND PB19 PB00 PX46 PBO1 VDDIO PB02
F| PC21 VDDCORE GND PX44 PX42 PX43 PX40 PX45
G| PC20 PC15 PC14 PC10 PC11 PC13 PC12 VDDCORE
H| PC09 PCO05 PCO06 PE26 VDDIO PCO07 PX39 PCO08
J| PB27 PX27 PX28 PX29 PX30 VDDCORE GND PX31
K| PA27 GND PX22 PX23 PX24 PX26 VDDIO PX25
L| PA28 VDDIO PE24 PX38 PX18 PX20 PX21 PX19
M PA29 PB28 PE20 PX08 PX34 PX36 PX37 PX35
N| PA30 PX53 PE22 PX06 PX11 PX15 PX17 PX16
P| WAKE_N PX41 PE21 PX09 PB30 PCO02 PX13 PX14
R| PA31 PX52 PE23 PX07 PB29 PCO00 PCO04 GND
T| PB26 PE25 PE19 PX10 PX12 PCO1 PCO03 VDDIO

32003M-AVR32-09/09

ATMEL

Y 5

12

4. Blockdiagram

Figure 4-1. Blockdiagram

TRST N——
I§K4’ JTAG j C
¢ INTERFACE PIXEL COPROCESSOR
o > AP CPU
TMS: » NEXUS
47,\,]'38[;__0]7 CLoAgl:S) 3 i MEMORY MANAGEMENT UNIT Qﬁ
|« MsEO[1.0p—— VSYNG
EVIIN—————> INSTR DATA HSYNC.
€ EVION CACHE CACHE LCD FF”\C/Y_I?(,
CONTRO i
D+ » USB m LLER | ‘ova
<«— oD » INTERFACE | 2 o0,
DATA[22..0],
DMA S M M M s <)::> DMA GPL[7..0]
DATA11.0B |MAGE M M
|—HSYNC—) M RAS,
| _vsync—p SENSOR cAS,
|_rciky INTERFACE HIGH SPEED s
BUS MATRIX NANDOE,
coL INTRAMO s NANDWE,
CRS: INTRAM1 s <):‘,> SDCK,
RXDI3..0 s W [ShOKE |
[RX_CLK, DMA M_ S MMS S M 5~ NWES3,
RX_DV, L3Q NWET,
RX_ER 5 b 8 NWEO,
WS NRD,
™OB.0. | MACBO Zog \DoR(2.0
-0l, S == ADDR[22..0
lg TXCLK, MACB1 PﬁSB—P% o8 HSB-HSB BRIDGE || o k- W <7DATA[[15..O%4)
TX_EN, | HSB-PB a = | €—NWAIT—]
ER. BRIDGE BRIDGE A PERIPHERAL 505
SPEED B DMA I3 NCS[5,4,2]
[MDIo—> - CONTROLLER 2% | ORW
2] <G — CFCEl p
2 ; ES | om
5 < .
2 DMA CONTROLLER ® Ne 2329
5 |€-DATA[31..16} |
oA E; USARTO «—RO——— ¢
PB o USART1 ——TXD— =
e SE patix T P
PD o AUDIO BITSTREAM | < o RTS, OT = e
PP™ | = |« oaTaon DAC z USART3 5 P
2 |«—DATAIN 5 PE
T O SERIAL <« Sck——» &
T [« _CMD—> MULTIMEDIA CARD < <);>§ PERIPHERAL <—Mlig,cgom4> 3
S |€——DATA[7..0}—| INTERFACE a INTERFACE 0/1 < NPCS[BO..1 > é—
SCLK—p» € TX_CLOCK, TX_FRAME_SYNC)» E
eomc_ | AC97 CONTROLLER < (=g SYNTHRONOUS mom—»| §
<«——sDo o CONTROLLER 0/1/2 €RX_CLOCK, RX_FRAME_SYNC)>
> €« RXDATA————
POWER
MANAGER /\,\:‘l> TWO-WIRE <« SCL———>
XIN32 » 32 KHz) INTERFACE “«—— SoA————»
<«4——XOUT32 oSsC CLOCK
XINO‘ N GENERATOR
| 7l osco (=) €———CLOCK[1..0——»
«—xouto CLOCK (=) PS2INTERFACE
XINT > CONTROLLER < DATAIL.OF—
‘ 0sC1 (=)
<—><OUT‘1
SLEEP
< PLLO‘ PLLO (| | CONTROLLER N REAL TIME
<«—PLUI PLL1 (=D ~ESET COUNTER
|€—GCLK[3.0—
| osCEN N , CONTROLLER WATCHDOG
—RESET_ N————— | TIMER
l€———A[2.0— INTERRUPT
<€«—B[2.0—» TIMER/COUNTER 0/1 CONTROLLER
CLK[2.0—»]
PWMO————— |
PULSE WIDTH
I EXTINT[7..01—| EXTERNAL MODULATION e PWM1———— |
<—KPS[7.0—] INTERRUPT CONTROLLER e PWM2—————— |
NMI_N—— CONTROLLER F—PWwM3——

AIMEL 13

32003M-AVR32-09/09 I ©

4.0.1 AVR32AP CPU

¢ 32-bit load/store AVR32B RISC architecture.
— Up to 15 general-purpose 32-bit registers.
— 32-bit Stack Pointer, Program Counter and Link Register reside in register file.
— Fully orthogonal instruction set.
— Privileged and unprivileged modes enabling efficient and secure Operating Systems.
— Innovative instruction set together with variable instruction length ensuring industry leading
code density.
— DSP extention with saturating arithmetic, and a wide variety of multiply instructions.
— SIMD extention for media applications.
¢ 7 stage pipeline allows one instruction per clock cycle for most instructions.
— Java Hardware Acceleration.
— Byte, half-word, word and double word memory access.
— Unaligned memory access.
— Shadowed interrupt context for INT3 and multiple interrupt priority levels.
— Dynamic branch prediction and return address stack for fast change-of-flow.
— Coprocessor interface.
Full MMU allows for operating systems with memory protection.
16Kbyte Instruction and 16Kbyte data caches.
— Virtually indexed, physically tagged.
— 4-way associative.
— Write-through or write-back.
* Nexus Class 3 On-Chip Debug system.
— Low-cost NanoTrace supported.

4.0.2 Pixel Coprocessor (PICO)

¢ Coprocessor coupled to the AVR32 CPU Core through the TCB Bus.
— Coprocessor number one on the TCB bus.
* Three parallel Vector Multiplication Units (VMU) where each unit can:
— Multiply three pixel components with three coefficients.
— Add the products from the multiplications together.
— Accumulate the result or add an offset to the sum of the products.
¢ Can be used for accelerating:
- Image Color Space Conversion.
¢ Configurable Conversion Coefficients.
e Supports packed and planar input and output formats.
e Supports subsampled input color spaces (i.e 4:2:2, 4:2:0).
— Image filtering/scaling.
¢ Configurable Filter Coefficients.
e Throughput of one sample per cycle for a 9-tap FIR filter.
* Can use the built-in accumulator to extend the FIR filter to more than 9-taps.
¢ Can be used for bilinear/bicubic interpolations.
— MPEG-4/H.264 Quarter Pixel Motion Compensation.
* Flexible input Pixel Selector.
— Can operate on numerous different image storage formats.
¢ Flexible Output Pixel Inserter.
— Scales and saturates the results back to 8-bit pixel values.
— Supports packed and planar output formats.

AIMEL 14

32003M-AVR32-09/09 I ©

4.0.3

4.0.4

4.0.5

4.0.6

Configurable coefficients with flexible fixed-point representation.

Debug and Test system

DMA Controller

IEEE1149.1 compliant JTAG and boundary scan

Direct memory access and programming capabilities through JTAG interface

Extensive On-Chip Debug features in compliance with IEEE-ISTO 5001-2003 (Nexus 2.0) Class 3
Auxiliary port for high-speed trace information

Hardware support for 6 Program and 2 data breakpoints

Unlimited number of software breakpoints supported

Advanced Program, Data, Ownership, and Watchpoint trace supported

2 HSB Master Interfaces
3 Channels
Software and Hardware Handshaking Interfaces
— 11 Hardware Handshaking Interfaces
Memory/Non-Memory Peripherals to Memory/Non-Memory Peripherals Transfer
Single-block DMA Transfer
Multi-block DMA Transfer
- Linked Lists
— Auto-Reloading
— Contiguous Blocks
DMA Controller is Always the Flow Controller
Additional Features
— Scatter and Gather Operations
— Channel Locking
— Bus Locking
— FIFO Mode
— Pseudo Fly-by Operation

Peripheral DMA Controller

Bus system

32003M-AVR32-09/09

Transfers from/to peripheral to/from any memory space without intervention of the processor.
Next Pointer Support, forbids strong real-time constraints on buffer management.
Eighteen channels

— Two for each USART

— Two for each Serial Synchronous Controller

— Two for each Serial Peripheral Interface

HSB bus matrix with 10 Masters and 8 Slaves handled
— Handles Requests from the CPU Icache, CPU Dcache, HSB bridge, HISI, USB 2.0 Controller,
LCD Controller, Ethernet Controller 0, Ethernet Controller 1, DMA Controller 0, DMA
Controller 1, and to internal SRAM 0, internal SRAM 1, PB A, PB B, EBI and, USB.

AIMEL 18

Y 5

32003M-AVR32-09/09

— Round-Robin Arbitration (three modes supported: no default master, last accessed default
master, fixed default master)
— Burst Breaking with Slot Cycle Limit
— One Address Decoder Provided per Master
* 2 Peripheral buses allowing each bus to run on different bus speeds.
— PB A intended to run on low clock speeds, with peripherals connected to the PDC.
— PB B intended to run on higher clock speeds, with peripherals connected to the DMACA.
* HSB-HSB Bridge providing a low-speed HSB bus running at the same speed as PBA
— Allows PDC transfers between a low-speed PB bus and a bus matrix of higher clock speeds

An overview of the bus system is given in Figure 4-1 on page 13. All modules connected to the
same bus use the same clock, but the clock to each module can be individually shut off by the
Power Manager. The figure identifies the number of master and slave interfaces of each module
connected to the HSB bus, and which DMA controller is connected to which peripheral.

AIMEL 16

Y 5

5. 1/0 Line Considerations

5.1 JTAG pins

5.2 WAKE_N pin

5.3 RESET_N pin

5.4 EVTLN pin

5.5 TWI pins

5.6 PIO pins

32003M-AVR32-09/09

The TMS, TDI and TCK pins have pull-up resistors. TDO is an output, driven at up to VDDIO,
and have no pull-up resistor. The TRST_N pin is used to initialize the embedded JTAG TAP
Controller when asserted at a low level. It is a schmitt input and integrates permanent pull-up
resistor to VDDIO, so that it can be left unconnected for normal operations.

The WAKE_N pin is a schmitt trigger input integrating a permanent pull-up resistor to VDDIO.

The RESET_N pin is a schmitt input and integrates a permanent pull-up resistor to VDDIO. As
the product integrates a power-on reset cell, the RESET_N pin can be left unconnected in case
no reset from the system needs to be applied to the product.

The EVTI_N pin is a schmitt input and integrates a non-programmable pull-up resistor to VDDIO.

When these pins are used for TWI, the pins are open-drain outputs with slew-rate limitation and
inputs with inputs with spike-filtering. When used as GPIO-pins or used for other peripherals, the
pins have the same characteristics as PIO pins.

All the I/O lines integrate a programmable pull-up resistor. Programming of this pull-up resistor is
performed independently for each 1/O line through the PIO Controllers. After reset, I/O lines
default as inputs with pull-up resistors enabled, except when indicated otherwise in the column
“Reset State” of the PIO Controller multiplexing tables.

AIMEL 7

Y 5

6. AVR32 AP CPU

Rev.: 1.0.0.0

This chapter gives an overview of the AVR32 AP CPU. AVR32 AP is an implementation of the
AVR32 architecture. A summary of the programming model, instruction set, caches and MMU is
presented. For further details, see the AVR32 Architecture Manual and the AVR32 AP Technical
Reference Manual.

6.1 AVR32 Architecture

AVRS32 is a new, high-performance 32-bit RISC microprocessor architecture, designed for cost-
sensitive embedded applications, with particular emphasis on low power consumption and high
code density. In addition, the instruction set architecture has been tuned to allow a variety of
microarchitectures, enabling the AVR32 to be implemented as low-, mid- or high-performance
processors. AVR32 extends the AVR family into the world of 32- and 64-bit applications.

Through a quantitative approach, a large set of industry recognized benchmarks has been com-
piled and analyzed to achieve the best code density in its class. In addition to lowering the
memory requirements, a compact code size also contributes to the core’s low power characteris-
tics. The processor supports byte and half-word data types without penalty in code size and
performance.

Memory load and store operations are provided for byte, half-word, word and double word data
with automatic sign- or zero extension of half-word and byte data.

In order to reduce code size to a minimum, some instructions have multiple addressing modes.
As an example, instructions with immediates often have a compact format with a smaller imme-
diate, and an extended format with a larger immediate. In this way, the compiler is able to use
the format giving the smallest code size.

Another feature of the instruction set is that frequently used instructions, like add, have a com-
pact format with two operands as well as an extended format with three operands. The larger
format increases performance, allowing an addition and a data move in the same instruction in a
single cycle. Load and store instructions have several different formats in order to reduce code
size and speed up execution.

The register file is organized as sixteen 32-bit registers and includes the Program Counter, the
Link Register, and the Stack Pointer. In addition, register R12 is designed to hold return values
from function calls and is used implicitly by some instructions.

6.2 The AVR32 AP CPU

32003M-AVR32-09/09

AVR32 AP targets high-performance applications, and provides an advanced OCD system, effi-
cient data and instruction caches, and a full MMU. Figure 6-1 on page 19 displays the contents
of AVR32 AP.

AIMEL 18

Y 5

6.2.1

32003M-AVR32-09/09

AT32AP7000

Figure 6-1. Overview of the AVR32 AP CPU
AN
8 8 3
® 2 2 £
o > 5} (9]
£ £ < <
[} = -
= a Q ©
£ o < »
5 101 15! 13
°
=
3 OoCD JTAG Reset
El system control control
£
Tightly Coupled Bus . . . BTB RAM interface
| AVR32 CPU pipeline with Java accelerator]
A A
Y MMU \ 4
Dcache Icache
Cache RAM interface § controller |« > 9 9 E - controller { Cache RAM interface
=l F |
5 E‘ o}
HSB 2 € |2 HSB
master Tl o |t master
() ()
| A I
o ™ |«
g 2
7] 1]
el el
Q Q
4 4
(2] (2]
Ny Ky
D D
I I

Pipeline Overview

AVR32 AP is a pipelined processor with seven pipeline stages. The pipeline has three subpipes,
namely the Multiply pipe, the Execute pipe and the Data pipe. These pipelines may execute dif-
ferent instructions in parallel. Instructions are issued in order, but may complete out of order
(O00) since the subpipes may be stalled individually, and certain operations may use a subpipe
for several clock cycles.

Figure 6-2 on page 20 shows an overview of the AVR32 AP pipeline stages.

AIMEL 19

Y 5

Figure 6-2. The AVR32 AP Pipeline

- M1 - M2 —p Multiply pipe
IF1 IF2 ID 1S Al - A2 —p» WB ALU pipe
Prefetch unit Decode unit
- -
L DA D Loasipséore

.The follwing abbreviations are used in the figure:

*|F1, IF2 - Instruction Fetch stage 1 and 2
*|D - Instruction Decode
*|S - Instruction Issue
*A1, A2 - ALU stage 1 and 2
*M1, M2 - Multiply stage 1 and 2
*DA - Data Address calculation stage
*D - Data cache access
*WB - Writeback
6.2.2 AVR32B Microarchitecture Compliance

AVR32 AP implements an AVR32B microarchitecture. The AVR32B microarchitecture is tar-
geted at applications where interrupt latency is important. The AVR32B therefore implements
dedicated registers to hold the status register and return address for interrupts, exceptions and
supervisor calls. This information does not need to be written to the stack, and latency is there-
fore reduced. Additionally, AVR32B allows hardware shadowing of the registers in the register
file.

The scall, rete and rets instructions use the dedicated return status registers and return address
registers in their operation. No stack accesses are performed by these instructions.

6.2.3 Java Support

AVR32 AP provides Java hardware acceleration in the form of a Java Virtual Machine hardware
implementation. Refer to the AVR32 Java Technical Reference Manual for details.

6.2.4 Memory management
AVR32 AP implements a full MMU as specified by the AVR32 architecture. The page sizes pro-
vided are 1K, 4K, 64K and 1M. A 32-entry fully-associative common TLB is implemented, as well
as a 4-entry micro-ITLB and 8-entry micro-DTLB. Instruction and data accesses perform lookups
in the micro-TLBs. If the access misses in the micro-TLBs, an access in the common TLB is per-
formed. If this access misses, a page miss exception is issued.

AIMEL 20

32003M-AVR32-09/09 I ©

6.2.5 Caches and write buffer

AVR32 AP implements 16K data and 16K instruction caches. The caches are 4-way set asso-
ciative. Each cache has a 32-bit System Bus master interface connecting it to the bus. The
instruction cache has a 32-bit interface to the fetch pipeline stage, and the data cache has a 64-
bit interface to the load-store pipeline. The caches use a least recently used allocate-on-read-
miss replacement policy. The caches are virtually tagged, physically indexed, avoiding the need
to flush them on task switch.

The caches provide locking on a per-line basis, allowing code and data to be permanently
locked in the caches for timing-critical code. The data cache also allows prefetching of data
using the prefinstruction.

Accesses to the instruction and data caches are tagged as cacheable or uncacheable on a per-
page basis by the MMU. Data cache writes are tagged as write-through or writeback on a per-
page basis by the MMU.

The data cache has a 32-byte combining write buffer, to avoid stalling the CPU when writing to
external memory. Writes are tagged as bufferable or unbufferable on a per-page basis by the
MMU. Bufferable writes to sequential addresses are placed in the buffer, allowing for example a
sequence of byte writes from the CPU to be combined into word transfers on the bus. A sync
instruction is provided to explicitly flush the write buffer.

6.2.6 Unaligned reference handling

32003M-AVR32-09/09

AVR32 AP has hardware support for performing unaligned memory accesses. This will reduce
the memory footprint needed by some applications, as well as speed up other applications oper-
ating on unaligned data.

AVR32 AP is able to perform certain word-sized load and store instructions of any alignment,
and word-aligned st.d and /d.d. Any other unaligned memory access will cause an MMU address
exception. All coprocessor memory access instructions require word-aligned pointers. Double-
word-sized accesses with word-aligned pointers will automatically be performed as two word-
sized accesses.

The following table shows the instructions with support for unaligned addresses. All other
instructions require aligned addresses. Accessing an unaligned address may require several
clock cycles, refer to the AVR32 AP Technical Reference Manual for details.

Table 6-1. Instructions with unaligned reference support
Instruction Supported alignment
Id.w Any
st.w Any
lddsp Any
lddpc Any
stdsp Any
Id.d Word
st.d Word
All coprocessor memory access instruction | Word

AIMEL 21

Y 5

6.2.7 Unimplemented instructions

The following instructions are unimplemented in AVR32 AP, and will cause an Unimplemented
Instruction Exception if executed:

*mems

*memc

*memt

6.2.8 Exceptions and Interrupts

32003M-AVR32-09/09

AVR32 AP incorporates a powerful exception handling scheme. The different exception
sources, like lllegal Op-code and external interrupt requests, have different priority levels, ensur-
ing a well-defined behavior when multiple exceptions are received simultaneously. Additionally,
pending exceptions of a higher priority class may preempt handling of ongoing exceptions of a
lower priority class. Each priority class has dedicated registers to keep the return address and
status register thereby removing the need to perform time-consuming memory operations to
save this information.

There are four levels of external interrupt requests, all executing in their own context. The INT3
context provides dedicated shadow registers ensuring low latency for these interrupts. An inter-
rupt controller does the priority handling of the external interrupts and provides the autovector
offset to the CPU.

The addresses and priority of simultaneous events are shown in Table 6-2 on page 23.

AIMEL 22

Y 5

Table 6-2. Priority and handler addresses for events
Priority | Handler Address Name Event source Stored Return Address
1 0xA000_0000 Reset External input Undefined
2 Provided by OCD system OCD Stop CPU OCD system First non-completed instruction
3 EVBA-+0x00 Unrecoverable exception Internal PC of offending instruction
4 EVBA+0x04 TLB multiple hit Internal signal PC of offending instruction
5 EVBA+0x08 Bus error data fetch Data bus First non-completed instruction
6 EVBA+0x0C Bus error instruction fetch Data bus First non-completed instruction
7 EVBA+0x10 NMI External input First non-completed instruction
8 Autovectored Interrupt 3 request External input First non-completed instruction
9 Autovectored Interrupt 2 request External input First non-completed instruction
10 Autovectored Interrupt 1 request External input First non-completed instruction
11 Autovectored Interrupt O request External input First non-completed instruction
12 EVBA+0x14 Instruction Address ITLB PC of offending instruction
13 EVBA+0x50 ITLB Miss ITLB PC of offending instruction
14 EVBA+0x18 ITLB Protection ITLB PC of offending instruction
15 EVBA+0x1C Breakpoint OCD system First non-completed instruction
16 EVBA+0x20 lllegal Opcode Instruction PC of offending instruction
17 EVBA+0x24 Unimplemented instruction Instruction PC of offending instruction
18 EVBA+0x28 Privilege violation Instruction PC of offending instruction
19 EVBA+0x2C Floating-point FP Hardware PC of offending instruction
20 EVBA+0x30 Coprocessor absent Instruction PC of offending instruction
21 EVBA+0x100 Supervisor call Instruction PC(Supervisor Call) +2
22 EVBA+0x34 Data Address (Read) DTLB PC of offending instruction
23 EVBA+0x38 Data Address (Write) DTLB PC of offending instruction
24 EVBA+0x60 DTLB Miss (Read) DTLB PC of offending instruction
25 EVBA+0x70 DTLB Miss (Write) DTLB PC of offending instruction
26 EVBA+0x3C DTLB Protection (Read) DTLB PC of offending instruction
27 EVBA+0x40 DTLB Protection (Write) DTLB PC of offending instruction
28 EVBA+0x44 DTLB Modified DTLB PC of offending instruction

32003M-AVR32-09/09

ATMEL

Y 5

23

6.3 Programming Model

6.3.1 Register file configuration
The AVR32B architecture specifies that the exception contexts may have a different number of
shadowed registers in different implementations. Figure 6-3 on page 24 shows the model used
in AVR32 AP.

Figure 6-3. The AVR32 AP Register File

Application Supervisor INTO INT1 INT2 INT3 Exception NMI
Bit 31 Bit 0 Bit 31 Bit 0 Bit 31 Bit0 Bit 31 Bit 0 Bit 31 Bit 0 Bit 31 Bit 0 Bit 31 Bit0 Bit 31 Bit 0
PC PC PC PC PC PC PC PC
LR LR LR LR LR LR_INT3 LR R
SP_APP SP_SYS SP_SYS SP_SYS SP_SYS SP_SYS SP_SYS SP_SYS
R12 R12 R12 R12 R12 R12_INT3 R12 R12
R11 R11 R11 R11 R11 R11_INT3 R11 R11
R10 R10 R10 R10 R10 R10_INT3 R10 R10
R9 R9 R9 R9 RO R9_INT3 RY R9
R8 R8 RS R8 R8 R8_INT3 R8 RS
R7 R7 R7 R7 R7 R7 R7 R7
R6 R6 R6 R6 R6 R6 R6 R6
R5 R5 RS R5 R5 R5 RS R5
R4 R4 R4 R4 R4 R4 R4 R4
R3 R3 R3 R3 R3 R3 R3 R3
R2 R2 R2 R2 R2 R2 R2 R2
R1 R1 R1 R1 R1 R1 R1 R1
RO RO RO RO RO RO RO RO
SR | [sR | SR SR SR SR SR SR
[RSR_suUP | RSR_INTO RSR_INTA RSR_INT2 RSR_INT3 RSR_EX RSR_NMI
[RAR_SUP_| RAR_INTO RAR_INT1 RAR_INT2 RAR_INT3 RAR_EX RAR_NMI
6.3.2 Status register configuration

The Status Register (SR) is splitted into two halfwords, one upper and one lower, see Figure 6-4
on page 24 and Figure 6-5 on page 25. The lower word contains the C, Z, N, V and Q condition
code flags and the R, T and L bits, while the upper halfword contains information about the
mode and state the processor executes in. Refer to the AVR32 Architecture Manual for details.

Figure 6-4. The Status Register High Halfword

Bit 31 Bit 16

- - H J |[DM| D - M2 | M1 | MO | EM | I3M | I12M | I1M | IOM | GM | Bit name

o,0,0, 0|0 |O0]O0 0|01 1 00| 0| 0| 1 Initial value

|—> Global Interrupt Mask

—— Interrupt Level 0 Mask
Interrupt Level 1 Mask
Interrupt Level 2 Mask
Interrupt Level 3 Mask
Exception Mask
Mode Bit 0

Mode Bit 1

Mode Bit 2

Reserved

Debug State

Debug State Mask
Java State

Java Handle
Reserved

Reserved

AIMEL 24

32003M-AVR32-09/09 I ©

YYYYYYYYYYYYY {

AT32AP7000

Figure 6-5. The Status Register Low Halfword

Bit 15 Bit 0

R/ T|-|-}|-|=-]=-|=-]=-]-]L|Q|V]|N|]Z| C | Bitname

o,o0/,0,0 0|0 0|0 0|O0|O0|O0|O0 |0 | 0| 0 |Initialvalue

I—» Carry

L » Zero

L———» Sign

Overflow

Saturation

Lock

Reserved

Scratch

» Register Remap Enable

YYVYYY

6.3.3 Processor States
6.3.3.1 Normal RISC State
The AVR32 processor supports several different execution contexts as shown in Table 6-3 on
page 25.
Table 6-3. Overview of execution modes, their priorities and privilege levels.
Priority | Mode Security Description
1 Non Maskable Interrupt Privileged Non Maskable high priority interrupt mode
2 Exception Privileged Execute exceptions
3 Interrupt 3 Privileged General purpose interrupt mode
4 Interrupt 2 Privileged General purpose interrupt mode
5 Interrupt 1 Privileged General purpose interrupt mode
6 Interrupt O Privileged General purpose interrupt mode
N/A Supervisor Privileged Runs supervisor calls
N/A Application Unprivileged Normal program execution mode

Mode changes can be made under software control, or can be caused by external interrupts or
exception processing. A mode can be interrupted by a higher priority mode, but never by one
with lower priority. Nested exceptions can be supported with a minimal software overhead.

When running an operating system on the AVR32, user processes will typically execute in the
application mode. The programs executed in this mode are restricted from executing certain
instructions. Furthermore, most system registers together with the upper halfword of the status
register cannot be accessed. Protected memory areas are also not available. All other operating
modes are privileged and are collectively called System Modes. They have full access to all priv-
ileged and unprivileged resources. After a reset, the processor will be in supervisor mode.

6.3.3.2 Debug State
The AVR32 can be set in a debug state, which allows implementation of software monitor rou-
tines that can read out and alter system information for use during application development. This
implies that all system and application registers, including the status registers and program
counters, are accessible in debug state. The privileged instructions are also available.

AIMEL 25

32003M-AVR32-09/09 I ©

6.3.3.3 Java State

32003M-AVR32-09/09

All interrupt levels are by default disabled when debug state is entered, but they can individually
be switched on by the monitor routine by clearing the respective mask bit in the status register.

Debug state can be entered as described in the AVR32 AP Technical Reference Manual.

Debug state is exited by the retd instruction.

AVR32 AP implements a Java Extension Module (JEM). The processor can be set in a Java
State where normal RISC operations are suspended. Refer to the AVR32 Java Technical Refer-
ence Manual for details.

AIMEL 26

Y 5

7. Pixel Coprocessor (PICO)

Rev.: 1.0.0.0
71 Features

¢ Coprocessor coupled to the AVR32 CPU Core through the TCB Bus.
* Three parallel Vector Multiplication Units (VMU) where each unit can:
— Multiply three pixel components with three coefficients.
— Add the products from the multiplications together.
— Accumulate the result or add an offset to the sum of the products.
¢ Can be used for accelerating:
- Image Color Space Conversion.
¢ Configurable Conversion Coefficients.
¢ Supports packed and planar input and output formats.
e Supports subsampled input color spaces (i.e 4:2:2, 4:2:0).
- Image filtering/scaling.
e Configurable Filter Coefficients.
e Throughput of one sample per cycle for a 9-tap FIR filter.
¢ Can use the built-in accumulator to extend the FIR filter to more than 9-taps.
¢ Can be used for bilinear/bicubic interpolations.
— MPEG-4/H.264 Quarter Pixel Motion Compensation.
* Flexible input Pixel Selector.
— Can operate on numerous different image storage formats.
* Flexible Output Pixel Inserter.
— Scales and saturates the results back to 8-bit pixel values.
— Supports packed and planar output formats.
¢ Configurable coefficients with flexible fixed-point representation.

7.2 Description

The Pixel Coprocessor (PICO) is a coprocessor coupled to the AVR32 CPU through the TCB
(Tightly Coupled Bus) interface. The PICO consists of three Vector Multiplication Units (VMUO,
VMU1, VMU2), an Input Pixel Selector and an Output Pixel Inserter. Each VMU can perform a
vector multiplication of a 1x3 12-bit coefficient vector with a 3x1 8-bit pixel vector. In addition a
12-bit offset can be added to the result of this vector multiplication.

The PICO can be used for transforming the pixel components in a given color space (i.e. RGB,
YCrCb, YUV) to any other color space as long as the transformation is linear. The flexibility of
the Input Pixel Selector and Output Pixel Insertion logic makes it easy to efficiently support dif-
ferent pixel storage formats with regards to issues such as byte ordering of the color
components, if the color components constituting an image are packed/interleaved or stored as
separate images or if any of the color components are subsampled.

The three Vector Multiplication Units can also be connected together to form one large vector
multiplier which can perform a vector multiplication of a 1x9 12-bit coefficient vector with a 9x1 8-
bit pixel vector. This can be used to implement FIR filters, bilinear interpolations filters for
smoothing/scaling images etc. By allowing the outputs from the Vector Multiplication units to
accumulate it is also possible to extend the order of the filter to more than 9-taps.

The results from the VMUs are scaled and saturated back to unsigned 8-bit pixel values in the
Output Pixel Inserter.

AIMEL 27

32003M-AVR32-09/09 I ©

The PICO is divided into three pipeline stages with a throughput of one operation per cpu clock
cycle.

7.3 Block Diagram

Figure 7-1. Pixel Coprocessor Block Diagram

; INPIXO \ INPIX1 \ INPIX2 ;

Pipeline Stage 1

Input Pixel Selector

Y A Y A A A A Y y

é VMUO_INO \ VMUO_IN1 \ VMUO_IN2 M VMU1_INO \ VMU1_IN1 \ VMU1_IN2 M VMU2_INO \ VMU2_IN1 \ VMU2_IN2 b

N T T I

COEFF0_0 > COEFF1_0 > COEFF2_0 >
COEFFO_1 > COEFF1_1 > COEFF2_1 >

VMUO VMU1 VMU2
COEFF0_2 > COEFF1_2 > COEFF2_2 >

A A A
Pipeline Stage 2

Y r
VMUO_OUT VMU1_OUT VMU2_OUT
L L

y

> Output Pixel Inserter

Y

; OUTPIXO \ OUTPIX1 \ OUTPIX2 ;

Pipeline Stage 3

AIMEL 28

32003M-AVR32-09/09 I ©

7.4 Vector Multiplication Unit (VMU)

Each VMU consists of three multipliers used for multiplying unsigned 8-bit pixel components with
signed 12-bit coefficients.The result from each multiplication is a 20-bit signed number that is
input to a 22-bit vector adder along with an offset as shown in Figure 7-2 on page 29. The oper-
ation is equal to the offsetted vector multiplication given in the following equation:

vmu_in0
vmu_out = [coeff0 coeffl coeff2] |vmu_in1| + Offset
vmu_in2
Figure 7-2. Inside VMUn (n € {0,1,2})
coeffn_0 vmun_in0 coeffn_1 vmun_in1 coeffn_2 vmun_in2
Multiply Multiply Multiply
offsetn + i L
Vector Adder
VMUn

y

vmun_out

7.5 Input Pixel Selector

The Input Pixel Selector uses the ISM (Input Selection Mode) field in the CONFIG register and
the three input pixel source addresses given in the PICO operation instructions to decide which
pixels to select for inputs to the VMUs.

7.5.1 Transformation Mode
When the Input Selection Mode is set to Transformation Mode the input pixel source addresses
INx, INy and INz directly maps to three pixels in the INPIXn registers. These three pixels are
then input to each of the VMUSs. The following expression then represents what is computed by
the VMUs in Transformation Mode:

VMUO_OUT COEFF0_0 COEFFO_1 COEFF0_2||INx| |OFFSETO or VMUO_OUT
VMU1_OUT| = |COEFF1_0 COEFF1_1 COEFF1_2||INy| + |OFFSET1 or VMU1_OUT
VMU2_OUT COEFF2_0 COEFF2_1 COEFF2_2||INz| |OFFSET2 or VMU2_OUT

7.5.2 Horizontal Filter Mode
In Horizontal Filter Mode the input pixel source addresses INx, INy and INz represents the base
pixel address of a pixel triplet. The pixel triplet {IN(x), IN(x+1), IN(x+2)} is input to VMUO, the
pixel triplet {IN(y), IN(y+1), IN(y+2)} is input to VMU1 and the pixel triplet {IN(z), IN(z+1), IN(z+2)}

AIMEL 29

Y 5

32003M-AVR32-09/09

is input to VMU2. Figure 7-3 on page 30 shows how the pixel triplet is found by taking the pixel
addressed by the base address and following the arrow to find the next two pixels which makes
up the triplet.

Figure 7-3. Horizontal Filter Mode Pixel Addressing

INPIXO IN® I8P 2
7/

INPIX1 IN——e— 5
/

INPIX2 INe=———To— 16 N

The following expression represents what is computed by the VMUs in Horizontal Filter Mode:

[IN(x+0
VMUO_OUT = [COEFF0_0 COEFF0_1 COEFF0_2] |IN(x+1
IN(x+2

+ (OFFSETO or VMUO_OUT)

[IN(y+0
VMU1_OUT = [COEFF1_0 COEFF1_1 COEFF1_2] |IN(y+1
LIN(y+2

+ (OFFSET1 or VMU1_OUT)

[IN(z+0

VMU2_OUT = [COEFF2_0 COEFF2_1 COEFF2_2] |IN(z+1)| + (OFFSET2 or VMU2_OUT)

= = = = = =~ =

z
N
+
N

7.5.3 Vertical Filter Mode
In Vertical Filter Mode the input pixel source addresses INx, INy and INz represent the base of a
pixel triplet found by following the vertical arrow shown in Figure 7-4 on page 30. The pixel triplet
{IN(x), IN((x+4)%11), IN((x+8)%11)} is input to VMUQ, the pixel triplet {IN(y), IN((y+4)%11),
IN((y+8)%11)} is input to VMU1 and the pixel triplet {IN(z), IN((z+4)%11), IN((z+8)%11)} is input
to VMU2.

Figure 7-4. Vertical Filter Mode Pixel Addressing

INPIXO0 INO)‘1 y” IN;

/ INS /INES /IN'

w4 / y
INPIX2 |N(|NK |N1(|NM

INPIX1 IN

AIMEL 30

32003M-AVR32-09/09 I ©

The following expression represents what is computed by the VMUs in Vertical Filter Mode:

[IN((x+0)%11
VMUO_OUT = [COEFF0_0 COEFF0_1 COEFF0_2] |IN((x+4)%11
LIN((x+8)%11

+ (OFFSETO or VMUO_OUT)

)

)

)]
[IN((y+0)%11)]
VMU1_OUT = [COEFF1_0 COEFF1_1 COEFF1_2] |IN((y+4)%11)| + (OFFSET1 or VMU1_OUT)
[IN((y+8)%11),
)
)
)]

[IN((z+0)%11
VMU2_OUT = [COEFF2_0 COEFF2_1 COEFF2_2||IN((z+4)%11
|IN((z+8)%11

+ (OFFSET2 or VMU2_OUT)

7.6 Output Pixel Inserter

The Output Pixel Inserter uses the OIM (Output Insertion Mode) field in the CONFIG register and
the destination pixel address given in the PICO operation instructions to decide which three of
the twelve possible OUTn pixels to write back the scaled and saturated results from the VMUs
to. The 22-bit results from each VMU is first scaled by performing an arithmetical right shift by
COEFF_FRAC_BITS in order to remove the fractional part of the results and obtain the integer
part. The integer part is then saturated to an unsigned 8-bit number in the range 0 to 255.

7.6.1 Planar Insertion Mode
In Planar Insertion Mode the destination pixel address OUTd specifies which pixel in each of the
registers OUTPIX0, OUTPIX1 and OUTPIX2 will be updated. VMUn writes to OUTPIXn. This
can be seen in Figure 7-5 on page 31 and Table 7-2 on page 49. This mode is useful when
transforming from one color space to another where the resulting color components should be
stored in separate images.

Figure 7-5. Planar Pixel Insertion

= VMU2
OUTPIX0 ouTo OUT1 ouT2 ouT3
OUTPIX1 ouT4 ouT5 ouT6 ouT?
OUTPIX2 ouT8 ouT9 ouT10 OUT11
N N N J
e Y \e Y
d=0 d=1 d=2 d=3

AIMEL 31

32003M-AVR32-09/09 I ©

7.6.2 Packed Insertion Mode

Figure 7-6.

In Packed Insertion Mode the three output registers OUTPIX0, OUTPIX1 and OUTPIX2 are
divided into four pixel triplets as seen in Figure 7-6 on page 32 and Table 7-2 on page 49. The
destination pixel address is then the address of the pixel triplet. VMUn writes to pixel n of the
pixel triplet. This mode is useful when transforming from one color space to another where the
resulting color components should be packed together.

Packed Pixel Insertion.

32003M-AVR32-09/09

OUTPIX0 OUTPIX1 OUTPIX2
A A A
s A
ouTo OuUT1 ouT2 OouT3 ouT4 OouTS OouT6 ouT7 ouT8 ouT9 OouT10 OouT11
-
Y ' ' Y
d=0 d=1 d=2 d=3

AIMEL 32

Y 5

7.7 User Interface

The PICO uses the TCB interface to communicate with the CPU and the user can read from or
write to the PICO Register File by using the PICO load/store/move instructions which maps to

generic coprocessor instructions.

7.71 Register File
The PICO register file can be accessed from the CPU by using the picomv.x, picold.x, picost.x,
picoldm and picostm instructions.
Table 7-1. PICO Register File

Cp Reg # Register Name Access

cr0 Input Pixel Register 2 INPIX2 Read/Write
cri Input Pixel Register 1 INPIX1 Read/Write
cr2 Input Pixel Register 0 INPIXO Read/Write
cr3 Output Pixel Register 2 OUTPIX2 Read Only
crd Output Pixel Register 1 OUTPIX1 Read Only
cr5 Output Pixel Register 0 OUTPIX0 Read Only
cré Coefficient Register A for VMUO COEFFO_A Read/Write
cr7 Coefficient Register B for VMUO COEFFO0_B Read/Write
cr8 Coefficient Register A for VMU1 COEFF1_A Read/Write
cr9 Coefficient Register B for VMUA1 COEFF1_B Read/Write
cr10 Coefficient Register A for VMU2 COEFF2_A Read/Write
crid Coefficient Register B for VMU2 COEFF2_B Read/Write
cri2 Output from VMUO VMUOQO_OUT Read/Write
cr13 Output from VMUA1 VMU1_OUT Read/Write
cri4 Output from VMU2 VMU2_OUT Read/Write
cr15 PICO Configuration Register CONFIG Read/Write

32003M-AVR32-09/09

ATMEL

Y 5

33

7.7.1.1 Input Pixel Register 0
Register Name: INPIX0

Access Type: Read/Write

31 30 29 28 27 26 25 24

| INO |
23 22 21 20 19 18 17 16

| IN1 |
15 14 13 12 11 10 9 8

| IN2 |
7 6 5 4 3 2 1 0

| IN3 |

¢ INO: Input Pixel 0
Input Pixel number 0 to the Input Pixel Selector Unit.

¢ IN1: Input Pixel 1
Input Pixel number 1 to the Input Pixel Selector Unit.

¢ IN2: Input Pixel 2
Input Pixel number 2 to the Input Pixel Selector Unit.

¢ IN3: Input Pixel 3
Input Pixel number 3 to the Input Pixel Selector Unit.

AIMEL 34

32003M-AVR32-09/09 I ©

7.7.1.2 Input Pixel Register 1
Register Name: INPIX1

Access Type: Read/Write

31 30 29 28 27 26 25 24

| NG |
23 22 21 20 19 18 17 16

| N5 |
15 14 13 12 11 10 9 8

| IN6 |
7 6 5 4 3 2 1 0

| N7 |

¢ INO: Input Pixel 4
Input Pixel number 4 to the Input Pixel Selector Unit.

e IN1: Input Pixel 5
Input Pixel number 5 to the Input Pixel Selector Unit.

¢ IN2: Input Pixel 6
Input Pixel number 6 to the Input Pixel Selector Unit.

¢ IN3: Input Pixel 7
Input Pixel number 7 to the Input Pixel Selector Unit.

AIMEL 35

32003M-AVR32-09/09 I ©

7.7.1.3 Input Pixel Register 2
Register Name: INPIX2

Access Type: Read/Write

31 30 29 28 27 26 25 24

| IN8 |
23 22 21 20 19 18 17 16

| IN9 |
15 14 13 12 11 10 9 8

| IN10 |
7 6 5 4 3 2 1 0

| IN11 |

¢ INO: Input Pixel 8
Input Pixel number 8 to the Input Pixel Selector Unit.

¢ IN1: Input Pixel 9
Input Pixel number 9 to the Input Pixel Selector Unit.

¢ IN2: Input Pixel 10
Input Pixel number 10 to the Input Pixel Selector Unit.

¢ IN3: Input Pixel 11
Input Pixel number 11 to the Input Pixel Selector Unit.

AIMEL 36

32003M-AVR32-09/09 I ©

7.7.1.4 Output Pixel Register 0
Register Name: OUTPIX0

Access Type: Read

31 30 29 28 27 26 25 24

| OouTo |
23 22 21 20 19 18 17 16

| OouT1 |
15 14 13 12 11 10 9 8

| OouT2 |
7 6 5 4 3 2 1 0

| OuT3 |

e OUTO: Output Pixel 0
Output Pixel number 0 from the Output Pixel Inserter Unit.

e OUT1: Output Pixel 1
Output Pixel number 1 from the Output Pixel Inserter Unit.

e OUT2: Output Pixel 2
Output Pixel number 2 from the Output Pixel Inserter Unit.

e OUT3: Output Pixel 3
Output Pixel number 3 from the Output Pixel Inserter Unit.

AIMEL 37

32003M-AVR32-09/09 I ©

7.7.1.5 Output Pixel Register 1
Register Name: OUTPIX1

Access Type: Read

31 30 29 28 27 26 25 24

| OUT4 |
23 22 21 20 19 18 17 16

| OuUT5 |
15 14 13 12 11 10 9 8

| OouUT6 |
7 6 5 4 3 2 1 0

| OouT? |

e OUT4: Output Pixel 4
Output Pixel number 4 from the Output Pixel Inserter Unit.

e OUTS5: Output Pixel 5
Output Pixel number 5 from the Output Pixel Inserter Unit.

e OUT6: Output Pixel 6
Output Pixel number 6 from the Output Pixel Inserter Unit.

e OUT7: Output Pixel 7
Output Pixel number 7 from the Output Pixel Inserter Unit.

AIMEL 38

32003M-AVR32-09/09 I ©

7.7.1.6 Output Pixel Register 2
Register Name: OUTPIX2

Access Type: Read

31 30 29 28 27 26 25 24

| ouTs |
23 22 21 20 19 18 17 16

| OouT9 |
15 14 13 12 11 10 9 8

| OuUT10 |
7 6 5 4 3 2 1 0

| OuT11 |

e OUTS: Output Pixel 8
Output Pixel number 8 from the Output Pixel Inserter Unit.

e OUT9: Output Pixel 9
Output Pixel number 9 from the Output Pixel Inserter Unit.

e OUT10: Output Pixel 10
Output Pixel number 10 from the Output Pixel Inserter Unit.

e OUT11: Output Pixel 11
Output Pixel number 11 from the Output Pixel Inserter Unit.

AIMEL 39

32003M-AVR32-09/09 I ©

7.7.1.7 Coefficient Register A for VMUO
Register Name: COEFFO_A

Access Type: Read/Write

31 30 29 28 27 26 25 24
| - [- [- - COEFF0_0 |
23 22 21 20 19 18 17 16
| COEFF0_0 |
15 14 13 12 11 10 9 8
| - - N - COEFFO_1 |
7 6 5 4 3 2 1 0
| COEFFO_1 |

e COEFFO0_0: Coefficient 0 for VMUO

Coefficient 0 input to VMUOQ. A signed 12-bit fixed-point number where the number of fractional bits is given by the
COEFF_FRAC_BITS field in the CONFIG register. The actual fractional number is equal to COEFFO _0/2CCEFF-FRACBITS
where the COEFFO0_0 value is interpreted as a 2’s complement integer. When reading this register, COEFF0_O0 is S|gn-
extended to 16-bits in order to fill in the unused bits in the upper halfword of this register.

e COEFFO0_1: Coefficient 1 for VMUO

Coefficient 1 input to VMUO. A signed 12-bit fixed-point number where the number of fractional bits is given by the
COEFF_FRAC_BITS field in the CONFIG register. The actual fractional number is equal to COEFF0_1,/2CCFFF-FRACBITS
where the COEFFO0_1 value is interpreted as a 2’s complement integer. When reading this register, COEFFO0_1 is sign-

extended to 16-bits in order to fill in the unused bits in the lower halfword of this register.

ATMEL X

32003M-AVR32-09/09

7.7.1.8 Coefficient Register B for VMUO
Register Name: COEFF0_B

Access Type: Read/Write

31 30 29 28 27 26 25 24
| : | - [: : COEFF0_2 |
23 22 21 20 19 18 17 16
| COEFFQ_2 |
15 14 13 12 11 10 9 8
| n - - - [OFFSETO |
7 6 5 4 3 2 1 0
| OFFSETO |

e COEFFO0_2: Coefficient 2 for VMUO

Coefficient 2 input to VMUOQ. A signed 12-bit fixed-point number where the number of fractional bits is given by the
COEFF_FRAC_BITS field in the CONFIG register. The actual fractional number is equal to COEFFO _2/pCOEFF_FRACBITS
where the COEFFO0_2 value is interpreted as a 2’s complement integer. When reading this register, COEFF0_2 is S|gn-
extended to 16-bits in order to fill in the unused bits in the upper halfword of this register.

e OFFSETO: Offset for VMUO

Offset input to VMUO in case of non-accumulating operations. A signed 12-bit fixed-point number where the number of frac-
tional bits is given by the OFFSET_FRAC_BITS field in the CONFIG register. The actual fractional number is equal to
OFFSET0,/20FFSET-FRACBITS '\here the OFFSETO value is interpreted as a 2’s complement integer. When reading this reg-
ister, OFFSETO is sign-extended to 16-bits in order to fill in the unused bits in the lower halfword of this register.

ATMEL o

32003M-AVR32-09/09

7.7.1.9 Coefficient Register A for VMU1
Register Name: COEFF1_A

Access Type: Read/Write

31 30 29 28 27 26 25 24
| - | - [- - COEFF1_0 |
23 22 21 20 19 18 17 16
| COEFF1_0 |
15 14 13 12 11 10 9 8
| - - 5 - COEFF1_1 |
7 6 5 4 3 2 1 0
| COEFF1_1 |

e COEFF1_0: Coefficient 0 for VMU1

Coefficient 0 input to VMU1. A signed 12-bit fixed-point number where the number of fractional bits is given by the
COEFF_FRAC_BITS field in the CONFIG register. The actual fractional number is equal to COEFF1_0,/2CCFFF-FRACBITS
where the COEFF1_0 value is interpreted as a 2’s complement integer. When reading this register, COEFF1_0 is sign-

extended to 16-bits in order to fill in the unused bits in the upper halfword of this register.

e COEFF1_1: Coefficient 1 for VMU1

Coefficient 1 input to VMUO. A signed 12-bit fixed-point number where the number of fractional bits is given by the
COEFF_FRAC_BITS field in the CONFIG register. The actual fractional number is equal to COEFF1_1,/2C0FFF-FRACBITS
where the COEFF1_1 value is interpreted as a 2’s complement integer. When reading this register, COEFF1_1 is sign-

extended to 16-bits in order to fill in the unused bits in the lower halfword of this register.

AIMEL 2

32003M-AVR32-09/09 I ©

7.7.1.10 Coefficient Register B for VMU1
Register Name: COEFF1_B

Access Type: Read/Write

31 30 29 28 27 26 25 24
| - | - | - - COEFF1_2 |
23 22 21 20 19 18 17 16
| COEFF1_2 |
15 14 13 12 11 10 9 8
| - - - - | OFFSET1 |
7 6 5 4 3 2 1 0
| OFFSET1 |

e COEFF1_2: Coefficient 2 for VMU1

Coefficient 2 input to VMU1. A signed 12-bit fixed-point number where the number of fractional bits is given by the
COEFF_FRAC_BITS field in the CONFIG register. The actual fractional number is equal to COEFF1_2,2CCFFF-FRACBITS
where the COEFF1_2 value is interpreted as a 2’s complement integer. When reading this register, COEFF1_2 is sign-

extended to 16-bits in order to fill in the unused bits in the upper halfword of this register.

e OFFSET1: Offset for VMU1

Offset input to VMU1 in case of non-accumulating operations. A signed 12-bit fixed-point number where the number of frac-
tional bits is given by the OFFSET_FRAC_BITS field in the CONFIG register. The actual fractional number is equal to
OFFSET1 /20FFSET-FRACBITS '\here the OFFSET1 value is interpreted as a 2’s complement integer. When reading this reg-
ister, OFFSET1 is sign-extended to 16-bits in order to fill in the unused bits in the lower halfword of this register.

AIMEL 43

32003M-AVR32-09/09 I ©

7.7.1.11 Coefficient Register A for VMU2
Register Name: COEFF2_A

Access Type: Read/Write

31 30 29 28 27 26 25 24
| : | - [: : COEFF2_0 |
23 22 21 20 19 18 17 16
| COEFF2_0 |
15 14 13 12 11 10 9 8
| - - 5 - COEFF2_1 |
7 6 5 4 3 2 1 0
| COEFF2_1 |

e COEFF2_0: Coefficient 0 for VMU2

Coefficient 0 input to VMU2. A signed 12-bit fixed-point number where the number of fractional bits is given by the
COEFF_FRAC_BITS field in the CONFIG register. The actual fractional number is equal to COEFF2 _0/2CCEFF-FRACBITS
where the COEFF2_0 value is interpreted as a 2’s complement integer. When reading this register, COEFF2_0 is S|gn-
extended to 16-bits in order to fill in the unused bits in the upper halfword of this register.

e COEFF2_1: Coefficient 1 for VMU2

Coefficient 1 input to VMU2. A signed 12-bit fixed-point number where the number of fractional bits is given by the
COEFF_FRAC_BITS field in the CONFIG register. The actual fractional number is equal to COEFF2_1,/2CCFFF-FRACBITS
where the COEFF2_1 value is interpreted as a 2’s complement integer. When reading this register, COEFF2_1 is sign-

extended to 16-bits in order to fill in the unused bits in the lower halfword of this register.

ATMEL .

32003M-AVR32-09/09

7.7.1.12 Coefficient Register B for VMU2
Register Name: COEFF2_B

Access Type: Read/Write

31 30 29 28 27 26 25 24
| - [- | - - COEFF2_2 |
23 22 21 20 19 18 17 16
| COEFF2_2 |
15 14 13 12 11 10 9 8
| - . - - | OFFSET2 |
7 6 5 4 3 2 1 0
| OFFSET2 |

e COEFF2_2: Coefficient 2 for VMU2

Coefficient 2 input to VMU2. A signed 12-bit fixed-point number where the number of fractional bits is given by the
COEFF_FRAC_BITS field in the CONFIG register. The actual fractional number is equal to COEFF2 0 /pCOEFF_FRACBITS
where the COEFF2_2 value is interpreted as a 2’s complement integer. When reading this register, COEFF2_2 is S|gn-
extended to 16-bits in order to fill in the unused bits in the upper halfword of this register.

e OFFSET2: Offset for VMU2

Offset input to VMU2 in case of non-accumulating operations. A signed 12-bit fixed-point number where the number of frac-
tional bits is given by the OFFSET_FRAC_BITS field in the CONFIG register. The actual fractional number is equal to
OFFSET2,/20FFSET-FRACBITS '\here the OFFSET2 value is interpreted as a 2’s complement integer. When reading this reg-
ister, OFFSET2 is sign-extended to 16-bits in order to fill in the unused bits in the lower halfword of this register.

ATMEL t

32003M-AVR32-09/09

7.7.1.13 VMUO Output Register
Register Name: VMUO_OUT

Access Type: Read/Write

31 30 29 28 27 26 25 24
T T - - - - —
23 22 21 20 19 18 17 16
| - | - | VMUO_OUT |
15 14 13 12 11 10 9 8
| VMUO_OUT |
7 6 5 4 3 2 1 0
| VMUO_OUT |

e VMUO_OUT: Output from VMUO

This register is used for directly accessing the output from VMUO or for setting the initial value of the accumulator for accu-
mulating operations. The output from VMUO is a signed 22-bit fixed-point number where the number of fractional bits are
given by the COEFF_FRAC_BITS field in the CONFIG register. When reading this register the signed 22-bit value is sign-
extended to 32-bits.

AIMEL .

32003M-AVR32-09/09 I ©

7.7.1.14 VMUT Output Register
Register Name: VMU1_OUT

Access Type: Read/Write

31 30 29 28 27 26 25 24
T T — : : : :]
23 22 21 20 19 18 17 16
| - | - | VMU1_OUT |
15 14 13 12 11 10 9 8
| VMU1_OUT |
7 6 5 4 3 2 1 0
| VMU1_OUT |

e VMU1_OUT: Output from VMU1

This register is used for directly accessing the output from VMU1 or for setting the initial value of the accumulator for accu-
mulating operations. The output from VMU1 is a signed 22-bit fixed-point number where the number of fractional bits are
given by the COEFF_FRAC_BITS field in the CONFIG register. When reading this register the signed 22-bit value is sign-
extended to 32-bits.

AIMEL 47

32003M-AVR32-09/09 I ©

7.7.1.15 VMUZ2 Output Register
Register Name: VMU2_OUT

Access Type: Read/Write

31 30 29 28 27 26 25 24
T T - - - - —
23 22 21 20 19 18 17 16
| - | - | VMU2_OUT |
15 14 13 12 11 10 9 8
| VMU2_OUT |
7 6 5 4 3 2 1 0
| VMU2_OUT |

e VMU2_OUT: Output from VMU2

This register is used for directly accessing the output from VMU2 or for setting the initial value of the accumulator for accu-
mulating operations. The output from VMU2 is a signed 22-bit fixed-point number where the number of fractional bits are
given by the COEFF_FRAC_BITS field in the CONFIG register. When reading this register the signed 22-bit value is sign-
extended to 32-bits.

AIMEL .

32003M-AVR32-09/09 I ©

7.7.1.16

PICO Configuration Register
Register Name: CONFIG

Access Type: Read/Write

31 30 29 28 27 26 25 24
| X | - X | X | X | - | X | X |
23 22 21 20 19 18 17 16
| X | - X | X | X | - | X | X |
15 14 13 12 11 10 9 8
| X | - X | X | X | oM | ISM |
7 6 5 4 3 2 1 0
| OFFSET_FRAC_BITS | COEFF_FRAC_BITS |

¢ OIM: Output Insertion Mode

The OIM bit specifies the semantics of the OUTd output pixel address parameter to the pico(s)v(mul/mac) instructions. The
OIM together with the output pixel address parameter specify which of the 12 output bytes (OUTn) of the OUTPIXn regis-
ters will be updated with the results from the VMUs. Table 7-2 on page 49 describes the different Output Insertion Modes.
See Section 7.6 "Output Pixel Inserter” on page 31 for a description of the Output Pixel Inserter.

Table 7-2. Output Insertion Modes
OIM | Mode Description
{OUTPIX0, OUTPIX1, OUTPIX2} is treated as one large register containing 4 sequential 24-
bit pixel triplets. The DST_ADR field specifies which of the sequential triplets will be updated.
0 Packed Insertion Mode

OUT(d*3 + 0) « Scaled and saturated output from VMUO
OUT(d*3 + 1) « Scaled and saturated output from VMU1
OUT(d*3 + 2) < Scaled and saturated output from VMU2

Planar Insertion Mode

Each of the OUTPIXn registers will get one of the resulting pixels. The triplet address
specifies what byte in each of the OUTPIXn registers the results will be written to.

OUT(d + 0) < Scaled and saturated output from VMUO
OUT(d+ 4) < Scaled and saturated output from VMU1
OUT(d + 8) < Scaled and saturated output from VMUZ2

¢ ISM: Input Selection Mode

The ISM field specifies the semantics of the input pixel address parameters INx, INy and INz to the
pico(s)v(mul/mac) instructions. Together with the three input pixel addresses the ISM field specifies to the Input Pixel
Selector which of the input pixels (INn) that should be selected as inputs to the VMUs.Table 7-3 on page 50 describes the

32003M-AV

R32-09/09

ATMEL

Y 5

49

different Input Selection Modes. See Section 7.5 "Input Pixel Selector” on page 29 for a description of the Input Pixel

Table 7-3. Input Selection Modes

ISM Mode

0 0 Transformation Mode VMUO, VMU1 and VMU2 get the same pixel inputs. These three pixels can be
freely selected from the INPIXn registers.

0 1 Horizontal Filter Mode P|xgl tnpletg are gelected for input to each Qf the VMUs by addressing
horizontal pixel triplets from the INPIXn registers.

1 0 Vertical Filter Mode Pllxel tr.lplets are selected for |npqt to each of the VMUs by addressing vertical
pixel triplets from the INPIXn registers.

1 1 Reserved N.A

Selector.

e OFFSET_FRAC_BITS: Offset Fractional Bits

Specifies the number of fractional bits in the fixed-point offsets input to each VMU. Must be in the range from 0 to
COEFF_FRAC_BITS. Other values gives undefined results.This value is used for scaling the OFFSETn values before
being input to VMUn so that the offset will have the same fixed-point format as the outputs from the multiplication stages

before performing the vector addition in the VMU.

e COEFF_FRAC_BITS: Coefficient Fractional Bits
Specifies the number of fractional bits in the fixed-point coefficients input to each VMU. Must be in the range from 0 to 11,
since at least one bit of the coefficient must be used for the sign. Other values gives undefined results.
COEFF_FRAC_BITS is used in the Output Pixel Inserter to scale the fixed-point results from the VMUs back to unsigned 8-

bit integers.

32003M-AVR32-09/09

ATMEL

Y 5

50

[i]
[i:]]

7.8 PICO Instructions
7.8.1 PICO Instructions Nomenclature
7.8.1.1 Registers and Operands
R{d, s, ...} The uppercase ‘R’ denotes a 32-bit (word) register.
Rd The lowercase ‘d’ denotes the destination register number.
Rs The lowercase ‘s’ denotes the source register number.
Rb The lowercase ‘b’ denotes the base register number for indexed addressing modes.
Ri The lowercase ‘i’ denotes the index register number for indexed addressing modes.
Rp The lowercase ‘p’ denotes the pointer register number.
IN{x, y, z} The uppercase ‘IN’ denotes a pixel in the INPIXn registers.
INx The lowercase ‘X’ denotes the first input pixel number for the PICO operation instructions.
INy The lowercase ‘y’ denotes the second input pixel number for the PICO operation instructions.
INz The lowercase ‘Zz’ denotes the third input pixel number for the PICO operation instructions.
OUTd The uppercase ‘OUT’ denotes a pixel in the OUTPIXn registers.
OuTd The lowercase ‘d’ denotes the destination pixel number for the PICO operation instructions.
Pr PICO register. See Section 7.7.1 "Register File” on page 33 for a complete list of registers.
PrHi:PrLo PICO register pair. Only register pairs corresponding to valid coprocessor double registers are valid.
E.g. INPIX1:INPIX2 (cr1:cr0). The low part must correspond to an even coprocessor register number
n and the high part must then correspond to coprocessor register n+1. See Table 7-1 on page 33
for a mapping between PICO register names and coprocessor register numbers.
PC Program Counter, equal to R15
LR Link Register, equal to R14
SP Stack Pointer, equal to R13
PICORegList Register List used in the picoldm and picostm instructions. See instruction description for which
register combinations are allowed in the register list.
disp Displacement
sa Shift amount

Denotes bit i in a immediate value. Example: imm6[4] denotes bit 4 in an 6-bit immediate value.

Denotes bit i to j in an immediate value.

Some instructions access or use doubleword operands. These operands must be placed in two consecutive register
addresses where the first register must be an even register. The even register contains the least significant part and
the odd register contains the most significant part. This ordering is reversed in comparison with how data is
organized in memory (where the most significant part would receive the lowest address) and is intentional.

32003M-AVR32-09/09

AIMEL 51

Y 5

The programmer is responsible for placing these operands in properly aligned register pairs. This is also specified in
the "Operands" section in the detailed description of each instruction. Failure to do so will result in an undefined

behavior.
7.8.1.2 Operations
ASR(x, n) SE(x, Bits(x) + n) >>n

SATSU(x, n) Signed to Unsigned Saturation (x is treated as a signed value):

If (x > (2"-1)) then (2"'-1); elseif (x < 0) then 0; else x;

SE(x, n) Sign Extend x to an n-bit value
7.8.1.3 Data Type Extensions

d Double (64-bit) operation.

W Word (32-bit) operation.

AIMEL 52

32003M-AVR32-09/09 I ©

7.8.2 PICO Instruction Summary
Table 7-4. PICO instruction summary
Mnemonics Operands / Syntax Description Operation
picosvmac E | OUTd, INx, INy, INz zégl?mslj?a%:gnv_emor multiplication and See PICO instruction set reference
picosvmul E | OUTd, INXx, INy, INz PICO single vector multiplication See PICO instruction set reference
picovmac E | OUTd, INx, INy, INz :(I:(C::L(J)m\ﬁgi%nr:.uItiplications and See PICO instruction set reference
picovmul OUTd, INx, INy, INz PICO vector multiplications. See PICO instruction set reference
PrHi:PrLo, Rp[disp] Load PICO register pair PrHi:PrLo « *(Rp+ZE(disp8<<2))

picold.d PrHi:PrLo, --Rp Load PICO register pair with pre-decrement PrHi:PrLo < *(--Rp)

E ;LI?';I:I;SOA] I;gggelﬁ(g) register pair with indexed PrHi:PrLo < *(Rb+(Ri << sa2))

E | Pr, Rp[disp] Load PICO register Pr « *(Rp+ZE(disp8<<2))
picold.w E | Pr,--Rp Load PICO register with pre-decrement Pr < *(--Rp)

E | Pr, Rb[Ri<<sa] Load PICO register with indexed addressing Pr « *(Rb+(Ri << sa2))
picoldm E | Rp{++}, PICORegList | Load multiple PICO registers See PICO instruction set reference

E | Rd, PrHi-PrLo IF\)/Iaoi;/e from PICO register pair to CPU register Rd+1:Rd < PrHi-PrLo
picomv.d : : :

E | PrHi:PrLo, Rd g/laci):/e from CPU register pair to PICO register PrHi-PrLo < Rd+1-Rd

] E | Rd, Pr Move from PICO register to CPU register Rd « Pr

pleomi-w E | Pr,Rd Move from CPU register to PICO register Pr«< Rd

E | Rpl[disp], PrHi:PrLo Store PICO register pair *(Rp+ZE(disp8<<2)) « PrHi:PrLo
picost.d E | Rp++, PrHi:PrLo Store PICO register pair with post-increment *(Rp--) <« PrHi:PrLo

E Eg_[lli::tli:riza], :;%rrzgii;) register pair with indexed *(Rb+(Ri << sa2)) « PrHi:PrLo

E | Rpldisp], Pr Store PICO register *(Rp+ZE(disp8<<2)) < Pr
picost.w E | Rp++, Pr Store PICO register with post-increment *(Rp--) « Pr

E | Rb[Ri<<sa], Pr Store PICO register with indexed addressing *(Rb+(Ri << sa2)) « Pr
picostm E | {--}Rp, PICORegList | Store multiple PICO registers See PICO instruction set reference

32003M-AVR32-09/09

ATMEL

Y 5

53

PICOSVMAC - PICO Single Vector Multiplication and Accumulation

Description

Performs three vector multiplications where the input pixels taken from the INPIXn registers depends on the Input Selection
Mode and the input pixel addresses given in the instruction. The values in the VMUn_OUT registers are then accumulated
with the new results from the vector multiplications. The results from each Vector Multiplication Unit (VMU) are then added
together for one of the outputs to the Output Pixels Inserter to form the result of a single vector multiplication of two 9-ele-
ment vectors. The results from the VMUs are then scaled and saturated to unsigned 8-bit values before being inserted into
the OUTPIXn registers. Which pixels to update in the OUTPIXn registers depend upon the Output Insertion Mode and the
output pixel address given in the instruction.

Operation:
l. if (Input Selection Mode == Horizontal Filter Mode) then

VMUO_OUT = [COEFF0_0 COEFF0_1 COEFFO_2] | IN(x+1)| + YMUO_OUT

VMU2_OUT = [COEFF2_0 COEFF2_1 COEFF2_2| [IN(z+1)| + VMU2_OUT

)
)
)]
)
VMU1_OUT = [COEFF1_0 COEFF1_1 COEFF1_2] |[IN(y+1)| + VMU1_OUT
)
)
)
)]

else if (Input Selection Mode == Vertical Filter Mode) then

[IN((x+0)%11)]
VMUO_OUT = [COEFFO_0 COEFF0_1 COEFFO_2] | IN((x+4)%11)| + VMUO_OUT
[IN((x+8)%11)|

[IN((y+0)%11)|
VMU1_OUT = [COEFF1_0 COEFF1_1 COEFF1_2]|IN((y+4)%11)| + VMU1_OUT
[IN((y+8)%11),

[IN((z+0)%11)]
VMU2_OUT = [COEFF2_0 COEFF2_1 COEFF2_2||IN((z+4)%11)| + VMU2_OUT
[IN((z+8)%11),

else if (Input Selection Mode == Transformation Mode) then

VMUO_OUT COEFF0_0 COEFFO_1 COEFF0_2| [INx| |VMUO_OUT
VMU1_OUT| = |COEFF1_0 COEFF1_1 COEFF1_2||INy| * |VMU1_OUT
VMU2_OUT COEFF2_0 COEFF2_1 COEFF2_2|[INz| |VMU2_OUT

if (Output Insertion Mode == Packed Insertion Mode) then
OUT(d*3 + 0) « SATSU(ASR(VMUO_OUT + VMU1_OUT + VMU2_OUT, COEFF_FRAC_BITS) , 8);
OUT(d*3 + 1) « SATSU(ASR(VMU1_OUT, COEFF_FRAC_BITS), 8);
OUT(d*3 + 2) « SATSU(ASR(VMU2_OUT, COEFF_FRAC_BITS), 8);

else if (Output Insertion Mode == Planar Insertion Mode) then
OUT(d + 0) « SATSU(ASR(VMUO_OUT + VMU1_OUT+ VMU2_OUT, COEFF_FRAC_BITS), 8);
OUT(d + 4) « SATSU(ASR(VMU1_OUT, COEFF_FRAC_BITS), 8);
OUT(d + 8) « SATSU(ASR(VMU2_OUT, COEFF_FRAC_BITS), 8);

AIMEL 54

32003M-AVR32-09/09 I ©

Syntax:
l. picosvmac OUTd, INx, INy, INz
Operands:
l. de{0,1,2,3}
X, y,ze{0,1,..,11}
Opcode:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
ouT
1 1 1 0 0 0 0 1 1 0 1 0 0 1 1 d[1]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ouT
PICO CP# d[0] INX INy INz
Example:
/*

Inner loop of a 16-tap symmetric FIR filter with coefficients {c0, c1, c2, c3, c4, c5, c6, c7, c7, ..., c0} set to filter the
pixels pointed to by r12 storing the result to the memory pointed to by r11. The coefficients in the PICO are already
set to the following values: COEFF0 0 = c0, COEFFO_1 =cl, COEFF0 2 =c2, COEFF1 0= c3, COEFF1 1 =c4,
COEFF1 2 =c¢5, COEFF2 0= c6, COEFF2 1=c7, COEFF2 2 =0, OFFSETO0 = 0.5 (For rounding the result),
OFFSET1 =0, OFFSET2 = 0.

The Input Selection Mode is set to Horizontal Filter Mode while the Output Insertion Mode is set to Planar Insertion
Mode.
The input image pointer might be unaligned, hence the use of 1d.w instead of picold.w.

*/

1d.w rl, r12[0] /* r1 = *((int *)src) */

Id.w r0, r12[4] /* 10 = *(((int *)src) + 1) */

Id.w r2, r12[8] /* 12 = *(((int *)src) +2) */

Id.w r3, r12[12] /* r3 = *(((int *)src) + 3) */

picomv.d INPIX1:INPIX2, r0 /* INPIX1={src[0],src[1],src[2],src[3]}, INPIX2={src[4],src[5],src[6],51C[7]} */

swap.b r2 /* 12 = {src[11],src[10],src[9],src[8]}*/

swap.b r3 /* 13 = {src[15],src[14],src[13],src[12]}*/

picosvmul OUT3, IN4, IN7, IN10 /* VMUO_OUT = c0*src[0]+c1*src[1]+c2*sre[2] + 0.5
VMU1_OUT = c3*src[3]+c4*src[4]+c5%sre[5]
VMU2_OUT = c6*src[6]+cT*src[7] */

picomv.d INPIX1:INPIX2, r2 /* INPIX1={src[15],src[14],src[13],src[12]},
INPIX2 ={src[11],src[10],src[9],src[8]} */

picosvmac OUT3, IN4, IN7, IN10 /* VMUO_OUT += cO0*src[15]+c1*src[14]+c2*src[13]
VMU1_OUT += c3*src[12]+c4*src[11]+c5*src[10]
VMU2_OUT += c6*src[9]+c7*src[8]
OUTS3 = satscaled(VMUO_OUT+VMU1_OUT+VMU2_OUT)*/

sub r12, -1 [* src++ */

picomv.w r4, OUTPIXO0 /*r4={OUTO0, OUT1, OUT2, OUT3 }

st.b rll++, r4 /* *dst = OUT3 */

AIMEL 55

32003M-AVR32-09/09 I ©

PICOSVMUL - PICO Single Vector Multiplication

Description

Performs three vector multiplications where the input pixels taken from the INPIXn registers depends on the Input Selection
Mode and the input pixel addresses given in the instruction. The results from each Vector Multiplication Unit (VMU) are then
added together for one of the outputs to the Output Pixels Inserter to form the result of a single vector multiplication of two
9-element vectors. The results from the VMUSs are then scaled and saturated to unsigned 8-bit values before being inserted
into the OUTPIXn registers. Which pixels to update in the OUTPIXn registers depend upon the Output Insertion Mode and
the output pixel address given in the instruction.

Operation:
l. OFFSET_SCALE = COEFF_FRAC_BITS - OFFSET_FRAC_BITS
if (Input Selection Mode == Horizontal Filter Mode) then

VMUO_OUT = [COEFFO_O COEFFO0_1 COEFFO_ZJ IN(x+1)| + OFFSETO << OFFSET_SCALE

+ OFFSET2 << OFFSET_SCALE

0)
)
2)]
0)
VMU1_OUT = [COEFF1_0 COEFF1_1 COEFF1_2] IN(y+1)| + OFFSET1 << OFFSET_SCALE
2)]
0)
VMU2_OUT = [COEFF2_0 COEFF2_1 COEFFz_z] IN(z+1)
2)]

else if (Input Selection Mode == Vertical Filter Mode) then

[IN((x+0)%11)|
VMUO_OUT = [COEFF0_0 COEFFO_1 COEFFO_2]|IN((x+4)%11)| + OFFSET0 << OFFSET_SCALE
[IN((x+8)%11)|

[IN((y+0)%11)|
VMU1_OUT = [COEFF1_0 COEFF1_1 COEFF1_2||IN((y+4)%11)| + OFFSET1 << OFFSET_SCALE
[IN((y+8)%11),

[IN((z+0)%11)]
VMU2_OUT = [COEFF2_0 COEFF2_1 COEFF2_2||IN((z+4)%11)| + OFFSET2 << OFFSET_SCALE
[IN((z+8)%11),

else if (Input Selection Mode == Transformation Mode) then

VMUO_OUT COEFF0_0 COEFF0_1 COEFFO0_2| |INx| |OFFSETO << OFFSET_SCALE
VMU1_OUT| = |COEFF1_0 COEFF1_1 COEFF1_2||INy| + |OFFSET1 << OFFSET_SCALE
VMU2_OUT COEFF2_0 COEFF2_1 COEFF2_2| |INz OFFSE20 << OFFSET_SCALE

if (Output Insertion Mode == Packed Insertion Mode) then
OUT(d*3 + 0) « SATSU(ASR(VMUO_OUT + VMU1_OUT + VMU2_OUT, COEFF_FRAC_BITS), 8);
OUT(d*3 + 1) « SATSU(ASR(VMU1_OUT, COEFF_FRAC_BITS), 8);
OUT(d*3 + 2) « SATSU(ASR(VMU2_OUT, COEFF_FRAC_BITS), 8);

else if (Output Insertion Mode == Planar Insertion Mode) then
OUT(d + 0) « SATSU(ASR(VMUO_OUT + VMU1_OUT+ VMU2_OUT, COEFF_FRAC_BITS), 8);
OUT(d + 4) « SATSU(ASR(VMU1_OUT, COEFF_FRAC_BITS), 8);
OUT(d + 8) « SATSU(ASR(VMU2_OUT, COEFF_FRAC_BITS), 8);

ATMEL s

32003M-AVR32-09/09

Syntax:
l. picosvmul OUTd, INXx, INy, INz
Operands:
l. de{0,1,2,3}
x,y,ze{0,1, .., 11}
Opcode:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
ouT
1 1 1 0 0 0 0 1 1 0 1 0 0 1 0 d[1]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ouT
PICO CP# d[o] INX INy INz
Example:
/*
Excerpt from inner loop of bilinear interpolation filter operating on image component stored in an array pointed to by
r12. The width of the image is stored in r11 while the resulting filtered image is pointed to by r10. The coefficients of
the filter: A, B, C, D are already set before this code is executed. COEFF0_0= A, COEFF0_1=B, COEFF0 2 =0,
COEFF1 0=C, COEFFI1 1=D, COEFF1 2=0,COEFF2 0=0,COEFF2 1=0,COEFF2 2=0, OFFSETO0=0.5
(For rounding the result), OFFSET1 = 0, OFFSET2 = 0.
The Input Selection Mode is set to Horizontal Filter Mode while the Output Insertion Mode is set to Planar Insertion
Mode.
The input image pointer might be unaligned, hence the use of 1d.w instead of picold.w, while the output image pointer
is word aligned.
Four output pixels are computed in this example which show an example of a bilinear interpolation filter found in
the Motion Compensation used in the H.264 Video Standard.
*/
ld.w rl, r12[0] /*rl =*((int *)src) */
ld.w 10, r12[r11] /* 10 = *((int *)(src + width)) */
sub rl2,-2 /¥ srct+=2 */
ld.w r3, r12[0] /* 13 = *((int *)src) */
ld.w 2, r12[rl1] /* 12 = *((int *)(src + width)) */
picomv.d INPIX1:INPIX2, rO /* INPIX1 =rl, INPIX2 =10 */
picosvmul OUTO, IN4, IN8, INO /* OUTO = A*src[j][i+0] + B*src[j][i+1] C*src[j+1][i] + D*src[j+1][i+1] */
picosvmul OUTT1, IN5, IN9, INO /* OUT1 = A*src[j][i+1] + B*src[j][i+2] C*src[j+1][i+1] + D*src[j+1][i+2] */
picomv.d INPIX1:INPIX2, r2 /* INPIX1 =13, INPIX2 =12 */
picosvmul OUT?2, IN4, INS, INO /* OUT2 = A*src[j][i+2] + B*src[j][i+3] C*src[j+1][i+2] + D*src[j+1][i+3] */
picosvmul OUT3, IN5, IN9, INO /* OUT3 = A*src[j][i+3] + B*src[j][i+4] C*src[j+1][i+3] + D*src[j+1][i+4] */
sub rl2, -2 /¥ srct+=2 */
picost.w r10++, OUTPIXO0 /* *((int *)src) = { OUTO, OUT1, OUT2, OUT3 } */

AIMEL 57

32003M-AVR32-09/09 I ©

PICOVMAC - PICO Vector Multiplication and Accumulation

Description

Performs three vector multiplications where the input pixels taken from the INPIXn registers depends on the Input Selection
Mode and the input pixel addresses given in the instruction. The values in the VMUn_OUT registers are then accumulated
with the new results from the vector multiplications. The results from the VMUs are then scaled and saturated to unsigned
8-bit values before being inserted into the OUTPIXn registers. Which pixels to update in the OUTPIXn registers depend
upon the Output Insertion Mode and the output pixel address given in the instruction.

Operation:
l. if (Input Selection Mode == Horizontal Filter Mode) then

VMUO_OUT = [COEFF0_0 COEFFO_1 COEFFO_2] |IN(x+1

VMU2_OUT = [COEFF2_0 COEFF2_1 COEFF2_2] [IN(z+1

)
)
)]
)
VMU1_OUT = [COEFF1_0 COEFF1_1 COEFF1_2] |IN(y+1)| + VMU1_OUT
)
)
)
)]

else if (Input Selection Mode == Vertical Filter Mode) then

[IN((x+0)%11)]
VMUO_OUT = [COEFF0_0 COEFF0_1 COEFFO_2] | IN((x+4)%11)
[IN((x+8)%11)|

[IN((y+0)%11)
VMU1_OUT = [COEFF1_0 COEFF1_1 COEFF1_2]|IN((y+4)%11)
[IN((y+8)%11)]

[IN((z+0)%11)]
VMU2_OUT = [COEFF2_0 COEFF2_1 COEFF2_2]|IN((z+4)%11)

[IN((z+8)%11),

else if (Input Selection Mode == Transformation Mode) then

+ VMUO_OUT

+VMU2_OUT

+ VMUO_OUT

+VMU1_OUT

+ VMU2_OUT

VMUO_OUT COEFF0_0 COEFFO_1 COEFF0_2| [INx| |VMUO_OUT
VMU1_OUT| = |COEFF1_0 COEFF1_1 COEFF1_2||INy| * |VMU1_OUT
VMU2_OUT COEFF2_0 COEFF2_1 COEFF2_2|[INz| |VMU2_OUT

if (Output Insertion Mode == Packed Insertion Mode) then

OUT(d*3 + 0) « SATSU(ASR(VMUO_OUT, COEFF_FRAC_BITS), 8)
OUT(d*3 + 1) « SATSU(ASR(VMU1_OUT, COEFF_FRAC_BITS), 8);
OUT(d*3 + 2) « SATSU(ASR(VMU2_OUT, COEFF_FRAC_BITS), 8)

else if (Output Insertion Mode == Planar Insertion Mode) then

OUT(d + 0) «- SATSU(ASR(VMUO_OUT, COEFF_FRAC_BITS), 8
OUT(d + 4) « SATSU(ASR(VMU1_OUT, COEFF_FRAC_BITS), 8
OUT(d + 8) « SATSU(ASR(VMU2_OUT, COEFF_FRAC_BITS), 8

ATMEL

32003M-AVR32-09/09 I ©

)

)
);

58

Syntax:
l. picovmac OUTd, INXx, INy, INz
Operands:
l. de{0,1,2,3}
x,yze{0,1,..,11}
Opcode:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
ouT
1 1 1 0 0 0 0 1 1 0 1 0 0 0 1 d[1]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ouT
PICO CP# d[o] INX INy INz
Example:
/*
Inner loop of a 6-tap symmetric FIR filter with coefficients {c0, c1, c2, c¢2, c1, c0 } set to filter in the vertical direction
of the image pointed to by r12 with the width of the image stored in r11 and the destination image stored in r10. The
coefficients in the PICO are already set to the following values: COEFF0 0 = c0, COEFF0 1 =cl, COEFF0 2 =c2,
COEFF1_0=c0, COEFF1 1=cl, COEFF1 2=c2, COEFF2 0=c0, COEFF2 1=cl, COEFF2 2=c2,
OFFSETO0 = OFFSET1 = OFFSET2 = 0.5 (For rounding the result).
The Input Selection Mode is set to Vertical Filter Mode while the Output Insertion Mode is set to Packed Insertion
Mode.
The input image is assumed to be word aligned.
*/
picold.w INPIXO0, r12[0] /* INPIXO0 = {src[0][0], src[0][1], src[0][2], src[O0][3] }*/
picold.w INPIX1, r12[rl1] /* INPIX1 = {src[1][0], src[1][1], src[1][2], src[1][3] }*/
picold.w INPIX2, r12[r11 << 1] /* INPIX2 = {src[2][0], src[2][1], src[2][2], src[2][3] } */
add r9,r12,rll /* r9 = src + width */
picovmul OUTO, INO, IN1, IN2 /* VMUO_OUT = c0*src[0][0]+c1*src[1][0]+c2*sre[2][0] + 0.5
VMUI1 _OUT = c0*src[0][1]+c1*sre[1][1]+c2*sre[2][1] + 0.5
VMU2 OUT = c0*src[0][2]+c1*src[1][2]+c2*sre[2][2] + 0.5%/
picold.w INPIX2, 9[rl1 << 1] /* INPIX2 = {src[3][0], src[3][1], src[3][2], src[3][3] }*/
picold.w INPIX1, r12[r11 <<2] /* INPIX1 = {src[4][0], src[4][1], src[4][2], src[4][3] }*/
picold.w INPIXO0, r9[r11 << 2] /* INPIXO0 = {src[5][0], src[5][1], src[5][2], src[S5][3] }*/
picovmac OUTO, INO, IN1, IN2 /* VMUO_OUT += c0*src[5][0]+c1*src[4][0]+c2*src[3][0]
VMUI1_OUT += c0*src[5][1]+c1*src[4][1]+c2*sre[3][1]
VMU2_OUT += c0*src[5][2]+c1*src[4][2]+c2*sre[3][2]

32003M-AVR32-09/09

OUTO = satscale(VMUO_OUT), OUT1 = satscale(VMU1_OUT),
OUT?2 = satscale(VMU2_OUT) */

59

ATMEL

Y 5

PICOVMUL - PICO Vector Multiplication

Description

Performs three vector multiplications where the input pixels taken from the INPIXn registers depends on the Input Selection
Mode and the input pixel addresses given in the instruction. The results from the VMUs are then scaled and saturated to
unsigned 8-bit values before being inserted into the OUTPIXn registers. Which pixels to update in the OUTPIXn registers
depend upon the Output Insertion Mode and the output pixel address given in the instruction.

Operation:
l. OFFSET_SCALE = COEFF_FRAC_BITS - OFFSET_FRAC_BITS
if (Input Selection Mode == Horizontal Filter Mode) then

VMUO_OUT = [COEFFO_O COEFFO0_1 COEFFO_ZJ IN(x+1)| + OFFSETO << OFFSET_SCALE

+ OFFSET2 << OFFSET_SCALE

0)
)
2)]
0)
VMU1_OUT = [COEFF1_0 COEFF1_1 COEFF1_2] IN(y+1)| + OFFSET1 << OFFSET_SCALE
2)]
0)
VMU2_OUT = [COEFF2_0 COEFF2_1 COEFFz_z] IN(z+1)
2)]

else if (Input Selection Mode == Vertical Filter Mode) then

[IN((x+0)%11)|
VMUO_OUT = [COEFFO0_0 COEFFO_1 COEFFO_2]|IN((x+4)%11)| + OFFSET0 << OFFSET_SCALE
[IN((x+8)%11)|

[IN((y+0)%11)|
VMU1_OUT = [COEFF1_0 COEFF1_1 COEFF1_2||IN((y+4)%11)| + OFFSET1 << OFFSET_SCALE
[IN((y+8)%11),

[IN((z+0)%11)]
VMU2_OUT = [COEFF2_0 COEFF2_1 COEFF2_2||IN((z+4)%11)| + OFFSET2 << OFFSET_SCALE
[IN((z+8)%11),

else if (Input Selection Mode == Transformation Mode) then

VMUO_OUT COEFF0_0 COEFFO0_1 COEFFO0_2| |INx| |OFFSETO << OFFSET_SCALE
VMU1_OUT| = |COEFF1_0 COEFF1_1 COEFF1_2||INy| + |OFFSET1 << OFFSET_SCALE
VMU2_OUT COEFF2_0 COEFF2_1 COEFF2_2| |INz OFFSE20 << OFFSET_SCALE

if (Output Insertion Mode == Packed Insertion Mode) then
OUT(d*3 + 0) « SATSU(ASR(VMUO_OUT, COEFF_FRAC_BITS), 8);
OUT(d*3 + 1) « SATSU(ASR(VMU1_OUT, COEFF_FRAC_BITS), 8);
OUT(d*3 + 2) « SATSU(ASR(VMU2_OUT, COEFF_FRAC_BITS), 8)
else if (Output Insertion Mode == Planar Insertion Mode) then
OUT(d + 0) « SATSU(ASR(VMUO_OUT, COEFF_FRAC_BITS), 8);
OUT(d + 4) « SATSU(ASR(VMU1_OUT, COEFF_FRAC_BITS), 8);
OUT(d + 8) « SATSU(ASR(VMU2_OUT, COEFF_FRAC_BITS), 8);

ATMEL o

32003M-AVR32-09/09

Syntax:
l. picovmul OUTd, INXx, INy, INz
Operands:
l. de{0,1,2,3}
x,y,ze{0,1, .., 11}
Opcode:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
ouT
1 1 1 0 0 0 0 1 1 0 1 0 0 0 0 d[1]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ouT
PICO CP# d[o] INX INy INz
Example:
/*
Excerpt from inner loop of YCrCb 4:2:2 planar format to RGB packed format image color conversion. The
coefficients of the transform is already set before this code is executed. In transforms like this, the inputs Y, Cr and
Cb are often offsetted with a given amount. This offset can be factored out and included in the offsets like this:
1.164*(Y - 16) = 1.164*Y - 18.625.
The pointer to the Y component is in r12, the pointer to the Cr component in r11 and the pointer to the Cb component
in r10. The pointer to the RGB output image is in r9.
The Input Selection Mode is set to Transform Mode while the Output Insertion Mode is set to Packed Insertion
Mode.
It is assumed that all the input and output pointers are word aligned.
Four RGB triplets are computed in this example. */
picold.w INPIXO, r12++ /* INPIX0= { Y[0], Y[1], Y[2], Y[3] }*/
picold.w INPIX1, r11++ /% INPIX1= { Cr[0], Cr[1], Cr[2], Cr[3] }*/
picold.w INPIX2, r10++ /* INPIX2= { Cb[0], Cb[1], Cb[2], Cb[3] }*/
picovmul OUTO, INO, IN4, IN8 /% OUTO0 =1[0], OUT1 = g[0], OUT2 =b[0] */
picovmul OUTTI, IN1, IN4, IN8 /% 0OUT3 =1[1], OUT4 = g[1], OUTS =b[1] */
picovmul OUT2, IN2, INS, IN9 /% 0OUT6 =1[2], OUT7 = g[2], OUT8 =b[2] */
picovmul OUTS3, IN3, INS, IN9 /% 0OUT9 =1[3], OUT10 = g[3], OUT11 =b[3] */
picostm 19, OUTPIX2, OUTPIX1, OUTPIX0/* RGB = {r[0],g[0],b[0],r[1],g[1],b[1],1r[2],g[2],b[2],r[3],g[31,b[3]} */

ATMEL o

32003M-AVR32-09/09

PICOLD.{D,W} - Load PICO Register(s)

Description
Reads the memory location specified into the given coprocessor register(s).

Operation:
l. PrHi:PrLo < *(Rp + (ZE(disp8) << 2));
Il. Rp < Rp-8;
PrHi:PrLo « *(Rp);
Il PrHi:PrLo < *(Rb + (Ri << sa2));
IV. Pr < *(Rp + (ZE(disp8) << 2));

V. Rp < Rp-4;
Pr < *(Rp);
VI. Pr <« *(Rb + (Ri << sa2));
Syntax:
l. picold.d PrHi:PrLo, Rp[disp]
1. picold.d PrHi:PrLo, --Rp
[l picold.d PrHi:PrLo, Rb[Ri<<sa]
IV. picold.w Pr, Rp[disp]
V. picold.w Pr, --Rp
VI. picold.w Pr, Rb[Ri<<sa]
Operands:

-, PrHi:PrLo € { INPIX1:INPIX2, COEFFO_B:COEFFO_A, COEFF1_B:COEFF1_A, COEFF2_B:COEFF2_A,
VMU1_OUT:VMUO_OUT, CONFIG:VMU2_OUT}

IV-VI. Pre{ INPIXO, INPIX1, INPIX2, COEFFO_A, COEFF0_B, COEFF1_A, COEFF1_B, COEFF2_A,
COEFF2_B, VMUO_OUT, VMU1_OUT, VMU2_OUT, CONFIG}

-II, IV-V.p € {0, 1, ..., 15}

,IV. disp € {0, 4, ..., 1020}

I, VI. {b,i}e{0,1,... 15}

I, VI. sae{0,1,2,3)

Opcode
.

31 30 29 28 27 26 25 24 23 22 20 20 19 18 17 16
R 1 1| o 1 0 o | 1 1 0 1 0 Rp |
5 14 13 12 11 10 9 8 7 6 5 4 3 ° 1 0
| PICO CP# IEN PrLo[3:1] | o | disp8 |

I,

31 3 29 28 27 2 25 24 23 22 21 20 19 18 17 16
R 1 1| o 1 1 R 1 0 1 o Rp

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| PICO CP# | o | PrLo[3:1] IEREEE 0 1 | o o 0 0

AIMEL 62

32003M-AVR32-09/09 I ©

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
B 1 1| o0 1 1 N 1 0 1 o Rp |
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| PICO CP# 1 PrLo[3:1] [o | o 1 Shamt | Ri |

IV.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
i 1 1 o0 1 0 o | 1 1 0 1 0 Rp |
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| PICO CP# | o | Pr | disp8 |

V.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
o 1 1] 0 1 1] 1 0 1 0 Rp |
5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| PICO CP# | o | Pr | o o | o 0 |

VI,

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
B 1 10 1 1 11 1 0 1 0 Rp |
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| PICO CP# BN Pr | o 0 Shamt | Ri |

Example:
picold.d COEFF0_B:COEFF0_A, r12[4]
63

32003M-AVR32-09/09

ATMEL

PICOLDM - Load Multiple PICO Registers

Description
Reads the memory locations specified into the given PICO registers. The pointer register can optionally be updated after
the operation.

Operation:
I. Il. 1ll. Loadaddress <«Rp;

if (PICORegList contains CONFIG)
CONFIG « *(Loadaddress++);

if (PICORegList contains VMU2_OUT)
VMU2_OUT <« *(Loadaddress++);

if (PICORegList contains VMU1_OUT)
VMU1_OUT <« *(Loadaddress++);

if (PICORegList contains VMUO_OUT)
VMUO_OUT <« *(Loadaddress++);

if (PICORegList contains COEFF2_B)
COEFF2_B <« *(Loadaddress++);

if (PICORegList contains COEFF2_A)
COEFF2_A « *(Loadaddress++);

if (PICORegList contains COEFF1_B)
COEFF1_B « *(Loadaddress++);

if (PICORegList contains COEFF1_A)
COEFF1_A « *(Loadaddress++);

if (PICORegList contains COEFFO0_B)
COEFFO0_B <« *(Loadaddress++);

if (PICORegList contains COEFFOQ_A)
COEFFO_A « *(Loadaddress++);

if (PICORegList contains OUTPIXO0)
Loadaddress++;

if (PICORegList contains OUTPIX1)
Loadaddress++;

if (PICORegList contains OUTPIX2)
Loadaddress++;

if (PICORegList contains INPIXO0)
INPIX0 « *(Loadaddress++);

if (PICORegList contains INPIX1)
INPIX1 « *(Loadaddress++);

if (PICORegList contains INPIX2)
INPIX2 « *(Loadaddress++);

if Opcode[++] == 1 then
Rp <« Loadaddress;

Syntax:

I picoldm Rp{++}, PICORegList
Il. picoldm Rp{++}, PICORegList
[l. picoldm Rp{++}, PICORegList
Operands:

l. PICORegList € { {INPIX1, INPIX2}, {OUTPIX2, INPIX0}, {OUTPIX0, OUTPIX1}, {COEFFO0_B, COEFFO_A},
{COEFF1_B, COEFF1_A}, {COEFF2_B, COEFF2_A}, {(VMU1_OUT, VMUO_OUT},

AIMEL 64

32003M-AVR32-09/09 I ©

{CONFIG, VMU2_OUT} }
Il. PICORegList € { INPIXO, INPIX1, INPIX2, OUTPIX0, OUTPIX1, OUTPIX2, COEFFO_A, COEFFO0_B }
Il PICORegList € { COEFF1_A, COEFF1_B, COEFF2_A,COEFF2_B, VMUO_OUT,VMU1_OUT,
VMU2_OUT, CONFIG, }

I-111. pef{0,1,...,15}
Opcode
.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
1 1 1 0 1 1 0 1 1 0 1 0 Rp
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CONFIG o co co co o o
PICOCP# | W | 0 1 0 O | yuipour | vMUOLOUT | GOEFFeA | GOEFFI-A | GOEFFOA | oUTPXI | NPIXo. | INPhe
Il.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
‘ 1 1 1 ‘ 0 1 1 0 ‘ 1 1 0 1 0 ‘ Rp ‘
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ PICO CP# | W | 0 ‘ 0 ‘ 0 ‘ 0 ‘ COEFF0_B ‘ COEFFO_A ‘ OUTPIX0 ‘ OUTPIX1 ‘ OUTPIX2 ‘ INPIXO | INPIX1 | INPIX2 ‘
.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
‘ 1 1 1 ‘ 0 1 1 0 ‘ 1 1 0 1 0 ‘ Rp ‘
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ PICO CP# | W | 0 ‘ 0 ‘ 0 ‘ 1 ‘ CONFIG ‘ VMU2_OUT ‘ VMU1_OUT ‘ VMUO_OUT ‘ COEFF2_B ‘ COEFF2_A | COEFF1_B | COEFF1_A ‘
Example:
1. picoldm r7++, COEFFO_A, COEFF0_B, COEFF1_A, COEFFl B, COEFF2 A, COEFF2 B
1I. picoldm r0, INPIXO0, INPIX1, INPIX2
I11. picoldm r12, VMUO OUT, VMU1 OUT, VMU2 OUT

AIMEL 65

32003M-AVR32-09/09 I ©

PICOMV.{D,W} — Move between PICO Register(s) and Register File

Description
Move the specified PICO register(s) to register(s) in the Register File or move register(s) in the Register File to PICO regis-
ter(s).

Operation:

I PrHi:PrLo < (Rs+1:Rs);

I. Pr < Rs;

Il (Rd+1:Rd) « PrHi:PrLo;

V. Rd « Pr;

Syntax:

l. picomv.d PrHi:PrLo, Rs
Il. picomv.w Pr, Rs

. picomv.d Rd, PrHi:PrLo
V. picomv.w Rd, Pr
Operands:

I,Il. PrHi:PrLo € { INPIX1:INPIX2, OUTPIX2:INPIX0, OUTPIX0:0UTPIX1, COEFFO_B:COEFFO_A,
COEFF1_B:COEFF1_A, COEFF2_B:COEFF2_A, VMU1_OUT:VMUO_OUT,
CONFIG:VMU2_OUT }

IILIV. Pre{ INPIXO, INPIX1, INPIX2, OUTPIX0, OUTPIX1, OUTPIX2, COEFFO_A, COEFFO_B, COEFF1_A,

COEFF1_B, COEFF2_A, COEFF2_B, VMUO_OUT, VMU1_OUT, VMU2_OUT, CONFIG}

. sef{0,2 4,..,14)

. de{0,2 4,..,14)

I, sef{0,1,.., 15}

IV, de{01, ..., 15)

Opcode

l.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

‘ 1 1 1 ‘ 0 1 1 1 ‘ 1 1 0 1 0 Rs | 0 ‘
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

‘ PICO CP# ‘ 0 ‘ PrLo[3:1] | 0 ‘ 0 0 1 1 0 0 0 0 ‘
Il.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

‘ 1 1 1 ‘ 0 1 1 1 ‘ 1 1 0 1 0 Rs

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

‘ PICO CP# ‘ 0 ‘ Pr ‘ 0 0 1 0 0 0 0 0

AIMEL 66

32003M-AVR32-09/09 I ©

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
‘ 1 1 1 ‘ 0 1 1 1 ‘ 1 1 0 1 0 Rd ‘ 0 ‘
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ PICO CP# ‘ 0 ‘ PrLo[3:1] ‘ 0 ‘ 0 0 0 1 0 0 0 0 ‘
IV.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
‘ 1 1 1 ‘ 0 1 1 1 ‘ 1 1 0 1 0 Rd
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ PICO CP# ‘ 0 ‘ Pr ‘ 0 0 0 0 0 0 0 0 ‘
Example:
picomv.d r2, OUTPIX0:OUTPIX1
picomv.w CONFIG, Ir
67

32003M-AVR32-09/09

ATMEL

PICOST.{D,W} — Store PICO Register(s)

Description
Stores the PICO register value(s) to the memory location specified by the addressing mode.

Operation:
l. *(Rp + (ZE(disp8) << 2)) « PrHi:PrLo;
Il. *(Rp) « PrHi:PrLo;
Rp < Rp+8;
Il. *(Rb + (Ri << sa2)) « PrHi:PrLo;
IV. *(Rp + (ZE(disp8) << 2)) « Pr;

V. *(Rp) < Pr;

Rp < Rp-4;
VI. *(Rb + (Ri << sa2)) « Pr;
Syntax:
l. picost.d Rpldisp], PrHi:PrLo
Il. picost.d Rp++, PrHi:PrLo
Il. picost.d Rb[Ri<<sa], PrHi:PrLo
IV. picost.w Rpl[disp], Pr
V. picost.w Rp++, Pr
VI. picost.w Rb[Ri<<sa], Pr
Operands:

I-l. PrHi:PrLo € { INPIX1:INPIX2, OUTPIX2:INPIX0, OUTPIX0:OUTPIX1, COEFFO_B:COEFFO_A,
COEFF1_B:COEFF1_A, COEFF2_B:COEFF2_A, VMU1_OUT:VMUO_OUT,
CONFIG:VMU2_OUT }

IV-VI. Pre{ INPIXO, INPIX1, INPIX2, OUTPIX0, OUTPIX1, OUTPIX2, COEFFO_A, COEFFO_B, COEFF1_A,

COEFF1_B, COEFF2_A, COEFF2_B, VMUO_OUT, VMU1_OUT, VMU2_OUT, CONFIG}

-II, IV-V.p € {0, 1, ..., 15}

,IV. disp € {0, 4, ..., 1020}

I, VI. {b,i}e{0,1,.., 15}

I, VI. sae{0,1,2,3)

Opcode
l.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
‘ 1 1 1 ‘ 0 1 0 1 ‘ 1 1 0 1 0 Rp ‘
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ PICO CP# ‘ 1 ‘ PrLo[3:1] | 0 ‘ disp8 ‘
Il.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
‘ 1 1 1 ‘ 0 1 1 1 ‘ 1 1 0 1 0 ‘ Rp
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ PICO CP# ‘ 0 ‘ PrLo[3:1] ‘ 0 ‘ 0 1 1 1 ‘ 0 0 0 0

AIMEL 68

32003M-AVR32-09/09 I ©

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
‘ 1 1 1 ‘ 0 1 1 1 ‘ 1 1 0 1 0 ‘ Rp ‘
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| PICO CP# 1 PrLo[3:1] IERE 1 Shamt | Ri |
V.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
‘ 1 1 1 ‘ 0 1 0 1 ‘ 1 1 0 1 0 Rp ‘
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ PICO CP# ‘ 0 ‘ Pr ‘ disp8 ‘
V.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
‘ 1 1 1 ‘ 0 1 1 1 ‘ 1 1 0 1 0 ‘ Rp ‘
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ PICO CP# ‘ 0 ‘ Pr ‘ 0 0 ‘ 0 0 ‘
V1.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
‘ 1 1 1 ‘ 0 1 1 1 ‘ 1 1 0 1 0 ‘ Rp ‘
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| PICO CP# BN Pr K 0 Shamt | Ri |
Example:
picost.w r10++, OUTPIXO0
69

32003M-AVR32-09/09

ATMEL

PICOSTM - Store Multiple PICO Registers

Description
Writes the PICO registers specified in the register list into the specified memory locations.

Operation:
I 1. 1.
if Opcode[--] == 1 then
Rp < Rp - 4*RegistersinList;
Storeaddress <« Rp;

if (PICORegList contains CONFIG)
*(Storeaddress++) «<— CONFIG;

if (PICORegList contains VMU2_OUT)
*(Storeaddress++) < VMU2_OUT;

if (PICORegList contains VMU1_OUT)
*(Storeaddress++) < VMU1_OUT;

if (PICORegList contains VMUO_OUT)
*(Storeaddress++) < VMUO_OUT;

if (PICORegList contains COEFF2_B)
*(Storeaddress++) « COEFF2_B;

if (PICORegList contains COEFF2_A)
*(Storeaddress++) < COEFF2_A;

if (PICORegList contains COEFF1_B)
*(Storeaddress++) <« COEFF1_B;

if (PICORegList contains COEFF1_A)
*(Storeaddress++) < COEFF1_A;

if (PICORegList contains COEFFO0_B)
*(Storeaddress++) « COEFFO_B;

if (PICORegList contains COEFFOQ_A)
*(Storeaddress++) « COEFFO_A;

if (PICORegList contains OUTPIXO0)
*(Storeaddress++) «<— OUTPIXO0;

if (PICORegList contains OUTPIX1)
*(Storeaddress++) «<— OUTPIX1;

if (PICORegList contains OUTPIX2)
*(Storeaddress++) «<— OUTPIX2;

if (PICORegList contains INPIX0)
*(Storeaddress++) < INPIXO0 ;

if (PICORegList contains INPIX1)
*(Storeaddress++) < INPIX1 ;

if (PICORegList contains INPIX2)
*(Storeaddress++) < INPIX2 ;

Syntax:

l. picostm {--}Rp, PICORegList
Il. picostm {--}Rp, PICORegList
Il. picostm {--}Rp, PICORegList
Operands:

l. PICORegList € { {INPIX1, INPIX2}, {OUTPIX2, INPIX0}, {OUTPIX0, OUTPIX1}, {COEFFO0_B, COEFFO_A},
{COEFF1_B, COEFF1_A}, {COEFF2_B, COEFF2_A}, {(VMU1_OUT, VMUO_OUT},

AIMEL 70

32003M-AVR32-09/09 I ©

{CONFIG, VMU2_OUT} }
Il. PICORegList € { INPIXO, INPIX1, INPIX2, OUTPIX0, OUTPIX1, OUTPIX2, COEFFO_A, COEFFO0_B }
Il PICORegList € { COEFF1_A, COEFF1_B, COEFF2_A,COEFF2_B, VMUO_OUT,VMU1_OUT,
VMU2_OUT, CONFIG, }

I-111. pef{0,1,...,15}
Opcode
.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
1 1 1 0 1 1 0 1 1 0 1 0 Rp
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CONFIG o co co co o o
PICOCP¥ | W | 0 1 0 1 | 'Sl | WMU0OUT | GOEFFeA | GOEFFI-A | GOEFFOA | oUTPXI | NPIX0. | INPhe
Il.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
‘ 1 1 1 ‘ 0 1 1 0 ‘ 1 1 0 1 0 ‘ Rp ‘
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ PICO CP# | W | 0 ‘ 0 ‘ 1 ‘ 0 ‘ COEFF0_B ‘ COEFFO_A ‘ OUTPIX0 ‘ OUTPIX1 ‘ OUTPIX2 ‘ INPIXO | INPIX1 | INPIX2 ‘
.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
‘ 1 1 1 ‘ 0 1 1 0 ‘ 1 1 0 1 0 ‘ Rp ‘
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ PICO CP# | W | 0 ‘ 0 ‘ 1 ‘ 1 ‘ CONFIG ‘ VMU2_OUT ‘ VMU1_OUT ‘ VMUO_OUT ‘ COEFF2_B ‘ COEFF2_A | COEFF1_B | COEFF1_A ‘
Example:
1. picostm --r7, COEFFO_A, COEFF0O B, COEFF1 A, COEFF1 B, COEFF2 A, COEFF2 B
1I. picostm r2, OUTPIX0, OUTPIX1, OUTPIX2
I11. picostm rll, VMUO_OUT, VMU1 OUT, VMU2 OUT

AIMEL 7

32003M-AVR32-09/09 I ©

7.9 Data Hazards

32003M-AVR32-09/09

Data hazards are caused by data dependencies between instructions which are in different
stages of the pipeline and reads/writes registers which are common to several pipeline stages.
Because of the 3-stage pipeline employed in the PICO data hazards might exist between
instructions. Data hazards are handled by hardware interlocks which can stall a new read com-
mand from or write command to the PICO register file.

Table 7-5. Data Hazards
Next Stall
Instruction Instruction Condition Cycles
Write-After-Read (WAR) or Write-After-Write (WAW)
. Hazard will occur if writing COEFFn_A/B, VMUn_OUT 1
picomv.x Pr,.... | or CONFIG since these are accessed when the PICO
picovmul p!00|d-x command is in Pipeline Stage 2 and Pipeline Stage 3.
picovmac picoldm : . .
. Writes to INPIXn registers produces no hazard since
picosvmul Lo 0
. they are only accessed in Pipeline Stage 1.
picosvmac
picomv.x Rd,... | Read-After-Write Hazard (RAW) will occur if reading
picost.x the PICO register file while a command is in the 2
picostm pipeline.

ATMEL

Y 5

72

8. Memories

8.1 Embedded Memories

¢ 32 Kbyte SRAM
— Implemented as two 16Kbyte blocks
— Single cycle access at full bus speed

8.2 Physical Memory Map

The system bus is implemented as an HSB bus matrix. All system bus addresses are fixed, and
they are never remapped in any way, not even in boot. Note that AT32AP7000 by default uses
segment translation, as described in the AVR32 Architecture Manual. The 32 bit physical
address space is mapped as follows:

Table 8-1. AT32AP7000 Physical Memory Map

Start Address Size Device

0x0000_0000 64 Mbyte EBI SRAM CS0
0x0400_0000 64 Mbyte EBI SRAM CS4
0x0800_0000 64 Mbyte EBI SRAM CS2
0x0C00_0000 64 Mbyte EBI SRAM CS3
0x1000_0000 256 Mbyte EBI SRAM/SDRAM CS1
0x2000_0000 64 Mbyte EBI SRAM CS5
0x2400_0000 16 Kbyte Internal SRAM 0
0x2400_4000 16 Kbyte Internal SRAM1
0xFF00_0000 4 Kbyte LCDC configuration
0xFF20_0000 1 KByte DMACA configuration
0xFF30_0000 1 MByte USBA Data
OxFFEO_0000 1 MByte PBA

0xFFFO0_0000 1 MByte PBB

Accesses to unused areas returns an error result to the master requesting such an access.

The bus matrix has the several masters and slaves. Each master has its own bus and its own
decoder, thus allowing a different memory mapping per master. The master number in the table
below can be used to index the HMATRIX control registers. For example, MCFG2 is associated
with the HSB-HSB bridge.

AIMEL 73

32003M-AVR32-09/09 I ©

Table 8-2. HSB masters

Master 0 CPU Dcache

Master 1 CPU Icache

Master 2 HSB-HSB Bridge

Master 3 IS| DMA

Master 4 USBA DMA

Master 5 LCD Controller DMA
Master 6 Ethernet MACO DMA
Master 7 Ethernet MAC1 DMA
Master 8 DMAC Master Interface 0
Master 9 DMAC Master Interface 1

Each slave has its own arbiter, thus allowing a different arbitration per slave. The slave number
in the table below can be used to index the HMATRIX control registers. For example, SCFG3 is
associated with PBB.

Table 8-3. HSB slaves

Slave 0 Internal SRAM 0
Slave 1 Internal SRAM1
Slave 2 PBA

Slave 3 PBB

Slave 4 EBI

Slave 5 USBA data

Slave 6 LCDC configuration
Slave 7 DMACA configuration

AIMEL 74

32003M-AVR32-09/09 I ©

9. Peripherals

9.1 Peripheral address map

Table 9-1. Peripheral Address Mapping

Address Peripheral Name Bus

0xFF000000
LCDC LCD Controller Slave Interface - LCDC HSB

0xFF200000
DMACA DMA Controller Slave Interface- DMACA HSB

0xFF300000
USBA USB Slave Interface - USBA HSB

0xFFE00000
SPIO Serial Peripheral Interface - SPI0O PB A

0xFFE00400
SPI1 Serial Peripheral Interface - SPI1 PB A

0xFFE00800
TWI Two-wire Interface - TWI PB A

0xFFE00CO00 i i

USARTO Universal Synchronous Asynchronous Receiver PB A

Transmitter - USARTO

0xFFE01000 Universal Synchronous Asynchronous Receiver
USARTI Transmitter - USART1 PBA
0xFFE01400 Universal Synchronous Asynchronous Receiver
USART2 Transmitter - USART2 PBA
0xFFE01800 Universal Synchronous Asynchronous Receiver
USARTS Transmitter - USART3 PBA
0xFFE01CO00
SSCO Synchronous Serial Controller - SSCO PB A
0xFFE02000
SSCH1 Synchronous Serial Controller - SSC1 PB A
0xFFE02400
SSC2 Synchronous Serial Controller - SSC2 PB A
0xFFE02800
PIOA Parallel Input/Output 2 - PIOA PB A
0xFFE02C00
PIOB Parallel Input/Output 2 - PIOB PB A
0xFFEO03000
PIOC Parallel Input/Output 2 - PIOC PB A
0xFFE03400
PIOD Parallel Input/Output 2 - PIOD PB A

AIMEL 75

32003M-AVR32-09/09 I ©

Table 9-1.

32003M-AVR32-09/09

Address

0xFFE03800

O0xFFE03C00

0xFFF00000

0xFFF00080

O0xFFF000B0

0xFFF00100

0xFFF00400

0xFFF00800

0xFFF00CO00

0xFFF01000

0xFFF01400

0xFFF01800

0xFFF01C00

0xFFF02000

0xFFF02400

0xFFF02800

0xFFF02C00

0xFFF03000

0xFFF03400

Peripheral Address Mapping (Continued)

PIOE

PSIF

PM

RTC

WDT

EIC

INTC

HMATRIX

TCO

TCA

PWM

MACBO

MACB1

ABDAC

MCI

AC97C

ISI

USBA

SMC

Peripheral Name

Parallel Input/Output 2 - PIOE

PS2 Interface - PSIF

Power Manager - PM

Real Time Counter- RTC

WatchDog Timer- WDT

External Interrupt Controller - EIC

Interrupt Controller - INTC

HSB Matrix - HMATRIX

Timer/Counter - TCO

Timer/Counter - TC1

Pulse Width Modulation Controller - PWM

Ethernet MAC - MACBO

Ethernet MAC - MACB1

Audio Bitstream DAC - ABDAC

MultiMedia Card Interface - MCI

AC97 Controller - AC97C

Image Sensor Interface - I1SI

USB Configuration Interface - USBA

Static Memory Controller - SMC

ATMEL

Y 5

Bus

PB A

PB A

PB B

PB B

PB B

PB B

PB B

PB B

PB B

PB B

PB B

PB B

PB B

PB B

PB B

PB B

PB B

PB B

PB B

76

Table 9-1. Peripheral Address Mapping (Continued)

Address Peripheral Name Bus
O0xFFF03800
SDRAMC SDRAM Controller - SDRAMC PBB
0xFFF03C00
ECC Error Correcting Code Controller - ECC PB B

9.2 Interrupt Request Signal Map

32003M-AVR32-09/09

The various modules may output interrupt request signals. These signals are routed to the Inter-
rupt Controller (INTC). The Interrupt Controller supports up to 64 groups of interrupt requests.
Each group can have up to 32 interrupt request signals. All interrupt signals in the same group
share the same autovector address and priority level. Refer to the documentation for the individ-
ual submodules for a description of the semantic of the different interrupt requests.

The interrupt request signals in AT32AP7000 are connected to the INTC as follows:

Table 9-2. Interrupt Request Signal Map

Group Line Signal
0 0 COUNT-COMPARE match
1 Performance Counter Overflow
1 0 LCDC EOF
1 LCDC LN
2 LCDC LSTLN
3 LCDC MER
4 LCDC OWR
5 LCDC UFLW
2 0 DMACA BLOCK
1 DMACA DSTT
2 DMACA ERR
3 DMACA SRCT
4 DMACA TFR
3 0 SPI 0
4 0 SPI1
5 0 TWI
6 0 USARTO
7 0 USART1
8 0 USART2
9 0 USART3
10 0 SSCOo
11 0 SSCH
ATMEL 77
Y 5

Table 9-2. Interrupt Request Signal Map

Group Line Signal
12 0 SSC2
13 0 PIOA
14 0 PIOB
15 0 PIOC
16 0 PIOD
17 0 PIOE
18 0 PSIF
19 0 EICO

1 EIC1

2 EIC2

3 EIC3
20 0 PM
21 0 RTC
22 0 TCO00

1 TCO1

2 TCO02
23 0 TC10

1 TC11

2 TC12
24 0 PWM
25 0 MACBO
26 0 MACB1
27 0 ABDAC
28 0 MCI
29 0 AC97C
30 0 ISI
31 0 USBA
32 0 EBI

AIMEL 78

32003M-AVR32-09/09 I ©

9.3 DMACA Handshake Interface Map

The following table details the hardware handshake map between the DMACA and the peripher-
als attached to it: :

Table 9-3. Hardware Handshaking Connection

Request Hardware Handshaking Interface
MCI RX 0

MCI TX

ABDAC TX

AC97C CHANNEL A RX
AC97C CHANNEL A TX
AC97C CHANNEL B RX
AC97C CHANNEL B TX
EXTERNAL DMA REQUEST 0
EXTERNAL DMA REQUEST 1
EXTERNAL DMA REQUEST 2
EXTERNAL DMA REQUEST 3

—_

© |00 | N O O b~ WwNd

—_
o

AIMEL 79

32003M-AVR32-09/09 I ©

9.4 Clock Connections

9.4.1 Timer/Counters

9.4.2 USARTs

32003M-AVR32-09/09

Each Timer/Counter channel can independently select an internal or external clock source for its

counter:
Table 9-4. Timer/Counter clock connections
Timer/Counter Source Name Connection
0 Internal TIMER_CLOCK1 clk_osc32
TIMER_CLOCK2 clk_pbb /4
TIMER_CLOCK3 clk_pbb /8
TIMER_CLOCK4 clk_pbb/16
TIMER_CLOCK5 clk_pbb /32
External XCO0 See Section 9.7
XC1
XC2
1 Internal TIMER_CLOCK1 clk_osc32
TIMER_CLOCK2 clk_pbb /4
TIMER_CLOCKS clk_pbb /8
TIMER_CLOCK4 clk_pbb /16
TIMER_CLOCK5 clk_pbb /32
External XCo See Section 9.7
XCi1
XC2

Each USART can be connected to an internally divided clock:

Table 9-5. USART clock connections
USART Source Name Connection
0 Internal CLK_DIV clk_pba/8
1
2
3

ATMEL

Y 5

80

9.4.3 SPIs

Each SPI can be connected to an internally divided clock:

Table 9-6. SPI clock connections
SPI Source Name Connection
0 Internal CLK_DIV clk_pba /32
1

9.4.4 USBA

OSC1 is connected to the USB HS Phy and must be 12 MHz when using the USBA.
9.5 External Interrupt Pin Mapping

External interrupt requests are connected to the following pins::

Table 9-7. External Interrupt Pin Mapping

Source Connection
NMI_N PB24
EXTINTO PB25
EXTINT1 PB26
EXTINT2 PB27
EXTINT3 PB28

9.6 Nexus OCD AUX port connections

If the OCD trace system is enabled, the trace system will take control over a number of pins, irre-
spectively of the PIO configuration. Two different OCD trace pin mappings are possible,
depending on the configuration of the OCD AXS register. For details, see the AVR32 AP Techni-
cal Reference Manual.

Table 9-8. Nexus OCD AUX port connections

Pin AXS=0 AXS=1
EVTI_N EVTI_N EVTI_N
MDOQOI5] PB09 PC18
MDOJ4] PB08 PC14
MDO[3] PB0O7 PC12
MDO[2] PB06 PC11
MDO[1] PBO5 PCO06
MDOJ0] PB04 PCO5
EVTO_N PBO03 PB28
MCKO PB02 PCO02
MSEO[1] PBO1 PCO1
MSEOI0] PBO00 PCO00

AIMEL 81

32003M-AVR32-09/09 I ©

9.7 Peripheral Multiplexing on IO lines

The AT32AP7000 features five PIO controllers, PIOA to PIOE, that multiplex the I/O lines of the
peripheral set. Each PIO Controller controls up to thirty-two lines.

Each line can be assigned to one of two peripheral functions, A or B. The tables in the following
pages define how the 1/O lines of the peripherals A and B are multiplexed on the PIO

Controllers.

Note that some output only peripheral functions might be duplicated within the tables.

9.7.1 PIO Controller A Multiplexing

32003M-AVR32-09/09

Table 9-9. PIO Controller A Multiplexing
CTBGA256 1/0 Line Peripheral A Peripheral B
K4 PA0O SPIO - MISO SSC1 - RX_FRAME_SYNC
K2 PAO1 SPI0 - MOSI SSC1 - TX_FRAME_SYNC
K3 PA02 SPIO0 - SCK SSC1 - TX_CLOCK
K6 PAO3 SPI0 - NPCS[0] SSC1 - RX_CLOCK
K7 PA04 SPI0 - NPCS[1] SSC1 - TX_DATA
K1 PAO5 SPI0 - NPCS[2] SSC1 - RX_DATA
A10 PA06 TWI - SDA USARTO - RTS
C10 PA07 TWI - SCL USARTO - CTS
L4 PAO8 PSIF - CLOCK USARTO - RXD
L1 PA09 PSIF - DATA USARTO - TXD
M4 PA10 MCI - CLK USARTO - CLK
M2 PA11 MCI - CMD TCO - CLKO
M5 PA12 MCI - DATA[0] TCO - A0
M3 PA13 MCI - DATA[1] TCO - A1
M1 PA14 MCI - DATA[2] TCO - A2
N4 PA15 MCI - DATA[3] TCO - BO
N2 PA16 USART1 - CLK TCO - B1
N3 PA17 USART1 - RXD TCO - B2
N1 PA18 USART1 - TXD TCO - CLK2
P2 PA19 USART1 - RTS TCO - CLK1
P1 PA20 USART1 - CTS SPI0 - NPCS[3]
P3 PA21 SSCO - RX_FRAME_SYNC PWM - PWM[2]
R1 PA22 SSCO - RX_CLOCK PWM - PWM[3]
R3 PA23 SSCO - TX_CLOCK TC1 - A0
T3 PA24 SSCO - TX_FRAME_SYNC TC1 - A1
P8 PA25 SSCO - TX_DATA TC1-BO
R8 PA26 SSCO - RX_DATA TC1 - B1
K9 PA27 SPI1 - NPCS[3] TC1 - CLKO
L9 PA28 PWM - PWM[O0] TC1- A2

ATMEL

Y 5

82

Table 9-9. PIO Controller A Multiplexing

M9 PA29 PWM - PWM[1] TC1-B2
N9 PA30 PM - GCLK][O0] TC1 - CLK1
R9 PA31 PM - GCLK[1] TC1 - CLK2

9.7.2 PIO Controller B Multiplexing

Table 9-10. PIO Controller B Multiplexing

CTBGA256 I/O Line Peripheral A Peripheral B
E12 PB00 ISI - DATA[O] SPI1 - MISO
E14 PBO1 ISI - DATA[1] SPI1 - MOSI
E16 PB02 ISI - DATA[2] SPI1 - NPCSI0]
D13 PB03 ISI - DATA[3] SPI1 - NPCS[1]
D15 PBO04 ISI - DATA[4] SPI1 - NPCS[2]
D14 PB05 ISI - DATA[5] SPI1 - SCK
D16 PB06 ISI - DATA[6] MCI - CMD[1]
C15 PBO7 ISI - DATA[7] MCI - DATA[4]
C16 PB08 ISI - HSYNC MCI - DATA[5]
C14 PB09 ISI - VSYNC MCI - DATA[6]
B14 PB10 ISI - PCLK MCI - DATA[7]
A4 PB11 PSIF - CLOCK[1] ISI - DATA[8]
c13 PB12 PSIF - DATA[1] ISI - DATA[9]
A13 PB13 SSC2 - TX_DATA ISI - DATA[10]
B13 PB14 SSC2 - RX_DATA ISI - DATA[11]
D12 PB15 SSC2 - TX_CLOCK USART3-CTS
A12 PB16 SSC2 - TX_FRAME_SYNC USART3 - RTS
C12 PB17 SSC2 - RX_FRAME_SYNC USART3 - TXD
B12 PB18 SSC2 - RX_CLOCK USART3 - RXD
E11 PB19 PM - GCLK[2] USART3 - CLK
D11 PB20 ABDAC - DATA[1] AC97C - SDO
A1 PB21 ABDAC - DATA[O] AC97C - SYNC
C11 PB22 ABDAC - DATAN[1] AC97C - SCLK
B11 PB23 ABDAC - DATANIO] AC97C - SDI
L6 PB24 NMI_N DMACA - DMARQI0]
L2 PB25 EXTINTO DMACA - DMARQ[1]
T9 PB26 EXTINTA USART2 - RXD
J9 PB27 EXTINT2 USART2 - TXD
M10 PB28 EXTINT3 USART2 - CLK
R13 PB29 PM - GCLK[3] USART2 - CTS
P13 PB30 PM - GCLK[4] USART2 - RTS

AIMEL 83

32003M-AVR32-09/09 I ©

9.7.3 PIO Controller C Multiplexing

Table 9-11. PIO Controller C Multiplexing
CTBGA256 1/0 Line Peripheral A Peripheral B
R14 PCO00 MACBO - COL
T14 PCO1 MACBO - CRS
P14 PCO02 MACBO - TX_ER
T15 PCO3 MACBO - TXDI[0]
R15 PCO4 MACBO - TXD[1]
H10 PCO5 MACBO - TXD[2] DMACA - DMARQ[2]
H11 PCO06 MACBO - TXDI[3] DMACA - DMARQ[3]
H14 PCO7 MACBO - TX_EN
H16 PCO08 MACBO - TX_CLK
H9 PCO09 MACBO - RXDI0]
G12 PC10 MACBO - RXDI[1]
G13 PC11 MACBO - RXD[2]
G15 PC12 MACBO - RXDI[3]
G14 PC13 MACBO - RX_ER
G11 PC14 MACBO - RX_CLK
G10 PC15 MACBO - RX_DV
B16 PC16 MACBO - MDC
B15 PC17 MACBO - MDIO
D10 PC18 MACBO - SPEED
B10 PC19 LCDC - CC MACB1 - COL
G9 PC20 LCDC - HSYNC
F9 PC21 LCDC - PCLK
D9 PC22 LCDC - VSYNC
A9 PC23 LCDC - DVAL MACB1 - CRS
co PC24 LCDC - MODE MACB1 - RX_CLK
B9 PC25 LCDC - PWR
G8 PC26 LCDC - DATA[0] MACB1 - TX_ER
F8 PC27 LCDC - DATA[1] MACB1 - TXD[2]
E8 PC28 LCDC - DATA[2] MACB1 - TXD[3]
D8 PC29 LCDC - DATA[3] MACB1 - RXD[2]
B8 PC30 LCDC - DATA[4] MACB1 - RXDI[3]
cs PC31 LCDC - DATA[5]

32003M-AVR32-09/09

ATMEL

Y 5

84

9.7.4 PIO Controller D Multiplexing

Table 9-12. PIO Controller D Multiplexing
CTBGA256 I/O Line Peripheral A Peripheral B
c2 PDO0O LCDC - DATA[6]
C1 PDO1 LCDC - DATA[7]
D3 PDO02 LCDC - DATA[8] MACB1 - MDIO
H6 PDO3 LCDC - DATA[9] MACB1 - MDC
H5 PDO04 LCDC - DATA[10] MACB1 - RX_DV
H4 PDO5 LCDC - DATA[11] MACB1 - RX_ER
H1 PDO6 LCDC - DATA[12] MACB1 - RXD[1]
H3 PDO7 LCDC - DATA[13]
J7 PDO08 LCDC - DATA[14]
J6 PD09 LCDC - DATA[15]
R2 PD10 LCDC - DATA[16] MACB1 - RXD[0]
P4 PD11 LCDC - DATA[17] MACB1 - TX_EN
T4 PD12 LCDC - DATA[18] MACB1 - TX_CLK
R4 PD13 LCDC - DATA[19] MACB1 - TXD[0]
N5 PD14 LCDC - DATA[20] MACB1 - TXD[1]
T5 PD15 LCDC - DATA[21] MACB1 - SPEED
P5 PD16 LCDC - DATA[22]
R5 PD17 LCDC - DATA[23]

9.7.5 PIO Controller E Multiplexing

32003M-AVR32-09/09

Table 9-13. PIO Controller E Multiplexing
CTBGA256 I/O Line Peripheral A Peripheral B
Cc6 PEOO EBI - DATA[16] LCDC - CC
E6 PEO1 EBI - DATA[17] LCDC - DVAL
AB PEO2 EBI - DATA[18] LCDC - MODE
D5 PEO3 EBI - DATA[19] LCDC - DATA[0]
B5 PE04 EBI - DATA[20] LCDC - DATA[1]
E5 PEO5 EBI - DATA[21] LCDC - DATA[2]
C5 PEO6 EBI - DATA[22] LCDC - DATA[3]
A5 PEO7 EBI - DATA[23] LCDC - DATA[4]
D4 PEO8 EBI - DATA[24] LCDC - DATA[8]
B4 PE09 EBI - DATA[25] LCDC - DATA[9]
o} PE10 EBI - DATA[26] LCDC - DATA[10]
Ad PE11 EBI - DATA[27] LCDC - DATA[11]

ATMEL

Y 5

85

Table 9-13. PIO Controller E Multiplexing
B3 PE12 EBI - DATA[28] LCDC - DATA[12]
A3 PE13 EBI - DATA[29] LCDC - DATA[16]
C3 PE14 EBI - DATA[30] LCDC - DATA[17]
A2 PE15 EBI - DATA[31] LCDC - DATA[18]
B2 PE16 EBI - ADDR[23] LCDC - DATA[19]
D1 PE17 EBI - ADDR[24] LCDC - DATA[20]
D2 PE18 EBI - ADDR[25] LCDC - DATA[21]
T PE19 EBI - CFCE1
M11 PE20 EBI - CFCE2
P11 PE21 EBI - NCS[4]
N11 PE22 EBI - NCS[5]
R11 PE23 EBI - CFRNW
L11 PE24 EBI - NWAIT
T10 PE25 EBI - NCS[2]

32003M-AVR32-09/09

ATMEL

Y 5

86

9.7.6 10 Pins Without Multiplexing

Many of the external EBI pins are not controlled by the PIO modules, but directly driven by the
EBI. These pins have programmable pullup resistors. These resistors are controlled by Special
Function Register 4 (SFR4) in the HMATRIX. The pullup on the lines multiplexed with PIO is
controlled by the appropriate P1O control register.

This SFR can also control CompactFlash, SmartMedia or NandFlash Support, see the EBI chap-
ter for details

9.7.6.1 HMatrix SFR4 EBI Control Register

Name: HMATRIX_SFR4

Access Type: Read/Write
31 30 29 28 27 26 25 24

I - - I - I - I - I - I - - |
23 22 21 20 19 18 17 16

I - - I - I - I - I - I - - |
15 14 13 12 11 10 9 8

| - - | - | - | - | - | - | EBI_DBPUC |
7 6 5 4 3 2 1 0

| - - | EBI_CS5A | EBI_CS4A | EBI_CS3A | - | EBI_CS1A | - |

32003M-AVR32-09/09

CS1A: Chip Select 1 Assignment
0 = Chip Select 1 is assigned to the Static Memory Controller.

1 = Chip Select 1 is assigned to the SDRAM Controller.

e CS3A: Chip Select 3 Assignment
0 = Chip Select 3 is only assigned to the Static Memory Controller and NCS3 behaves as
defined by the SMC.

1 = Chip Select 3 is assigned to the Static Memory Controller and the NAND Flash/SmartMedia
Logic is activated.

e CS4A: Chip Select 4 Assignment
0 = Chip Select 4 is assigned to the Static Memory Controller and NCS4, NCS5 and NCS6
behave as defined by the SMC.

1 = Chip Select 4 is assigned to the Static Memory Controller and the CompactFlash Logic is
activated.

e CS5A: Chip Select 5 Assignment
0 = Chip Select 5 is assigned to the Static Memory Controller and NCS4, NCS5 and NCS6
behave as defined by the SMC.

1 = Chip Select 5 is assigned to the Static Memory Controller and the CompactFlash Logic is

activated.
ATMEL 87

Y 5

Accessing the address space reserved to NCS5 and NCS6 may lead to an unpredictable
outcome.

e EBI_DBPUC: EBI Data Bus Pull-up Control
0: EBI D[15:0] are internally pulled up to the VDDIO power supply. The pull-up resistors are
enabled after reset.

1: EBI D[15:0] are not internally pulled up.

Table 9-14. 10 Pins without multiplexing

I/0 Line Function
PX00 EBI - DATA[O]
PX01 EBI - DATA[1]
PX02 EBI - DATA[2]
PX03 EBI - DATA[3]
PX04 EBI - DATA[4]
PX05 EBI - DATA[5]
PX06 EBI - DATA[6]
PX07 EBI - DATA[7]
PX08 EBI - DATA[8]
PX09 EBI - DATA[9]
PX10 EBI - DATA[10]
PX11 EBI - DATA[11]
PX12 EBI - DATA[12]
PX13 EBI - DATA[13]
PX14 EBI - DATA[14]
PX15 EBI - DATA[15]
PX16 EBI - ADDR[0]
PX17 EBI - ADDR[1]
PX18 EBI - ADDR[2]
PX19 EBI - ADDR[3]
PX20 EBI - ADDR[4]
PX21 EBI - ADDR[5]
PX22 EBI - ADDR[6]
PX23 EBI - ADDR[7]
PX24 EBI - ADDR[8]
PX25 EBI - ADDR[9]
PX26 EBI - ADDR[10]
PX27 EBI - ADDR[11]
PX28 EBI - ADDR[12]
PX29 EBI - ADDR[13]
PX30 EBI - ADDR[14]
PX31 EBI - ADDR[15]

AIMEL 88

32003M-AVR32-09/09 I ©

Table 9-14. 10 Pins without multiplexing (Continued)

PX32 EBI - ADDR[16]
PX33 EBI - ADDR[17]
PX34 EBI - ADDR[18]
PX35 EBI - ADDR[19]
PX36 EBI - ADDR[20]
PX37 EBI - ADDR[21]
PX38 EBI - ADDR[22]
PX39 EBI - NCS[0]
PX40 EBI - NCS[1]
PX41 EBI - NCS[3]
PX42 EBI - NRD
PX43 EBI - NWEO
PX44 EBI - NWE1
PX45 EBI - NWE3
PX46 EBI - SDCK
PX47 EBI - SDCKE
PX48 EBI - RAS
PX49 EBI - CAS
PX50 EBI - SDWE
PX51 EBI - SDA10
PX52 EBI - NANDOE
PX53 EBI - NANDWE

AIMEL 89

32003M-AVR32-09/09 I ©

9.8 Peripheral overview
9.8.1 External Bus Interface

¢ Optimized for Application Memory Space support
¢ Integrates Three External Memory Controllers:
— Static Memory Controller
— SDRAM Controller
— ECC Controller
Additional Logic for NAND Flash/SmartMedia™ and CompactFlash™ Support
— SmartMedia support: 8-bit as well as 16-bit devices are supported
— CompactFlash support: all modes (Attribute Memory, Common Memory, I/O, True IDE) are
supported but the signals _I0IS16 (I/O and True IDE modes) and _ATA SEL (True IDE mode)
are not handled.
Optimized External Bus:
— 16- or 32-bit Data Bus
— Up to 26-bit Address Bus, Up to 64-Mbytes Addressable
— Optimized pin multiplexing to reduce latencies on External Memories
Up to 6 Chip Selects, Configurable Assignment:
— Static Memory Controller on NCS0
— SDRAM Controller or Static Memory Controller on NCS1
— Static Memory Controller on NCS2
— Static Memory Controller on NCS3, Optional NAND Flash/SmartMedia™ Support
— Static Memory Controller on NCS4 - NCS5, Optional CompactFlash™ Support
9.8.2 Static Memory Controller

* 6 Chip Selects Available

* 64-Mbyte Address Space per Chip Select

® 8-, 16- or 32-bit Data Bus

¢ Word, Halfword, Byte Transfers

¢ Byte Write or Byte Select Lines

* Programmable Setup, Pulse And Hold Time for Read Signals per Chip Select

* Programmable Setup, Pulse And Hold Time for Write Signals per Chip Select

* Programmable Data Float Time per Chip Select

¢ Compliant with LCD Module

¢ External Wait Request

¢ Automatic Switch to Slow Clock Mode

* Asynchronous Read in Page Mode Supported: Page Size Ranges from 4 to 32 Bytes
9.8.3 SDRAM Controller

* Numerous Configurations Supported
— 2K, 4K, 8K Row Address Memory Parts
— SDRAM with Two or Four Internal Banks
— SDRAM with 16- or 32-bit Data Path
* Programming Facilities
— Word, Half-word, Byte Access
— Automatic Page Break When Memory Boundary Has Been Reached
— Multibank Ping-pong Access
— Timing Parameters Specified by Software
— Automatic Refresh Operation, Refresh Rate is Programmable

AIMEL 9

32003M-AVR32-09/09 I ©

¢ Energy-saving Capabilities
— Self-refresh, Power-down and Deep Power Modes Supported
— Supports Mobile SDRAM Devices
Error Detection
— Refresh Error Interrupt
SDRAM Power-up Initialization by Software
CAS Latency of 1, 2, 3 Supported
¢ Auto Precharge Command Not Used
9.8.4 Error Corrected Code Controller

¢ Hardware Error Corrected Code (ECC) Generation
— Detection and Correction by Software
* Supports NAND Flash and SmartMedia™ Devices with 8- or 16-bit Data Path.
¢ Supports NAND Flash/SmartMedia with Page Sizes of 528, 1056, 2112 and 4224 Bytes, Specified
by Software
9.8.5 Serial Peripheral Interface

* Supports communication with serial external devices
— Four chip selects with external decoder support allow communication with up to 15
peripherals
— Serial memories, such as DataFlash™ and 3-wire EEPROMs
— Serial peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and Sensors
— External co-processors
* Master or slave serial peripheral bus interface
— 8- to 16-bit programmable data length per chip select
— Programmable phase and polarity per chip select
— Programmable transfer delays between consecutive transfers and between clock and data
per chip select
— Programmable delay between consecutive transfers
— Selectable mode fault detection
¢ Very fast transfers supported
— Transfers with baud rates up to MCK
— The chip select line may be left active to speed up transfers on the same device
9.8.6 Two-wire Interface

¢ Compatibility with standard two-wire serial memory
* One, two or three bytes for slave address
¢ Sequential read/write operations

AIMEL 91

32003M-AVR32-09/09 I ©

9.8.7 USART

* Programmable Baud Rate Generator
¢ 5- to 9-bit full-duplex synchronous or asynchronous serial communications
— 1, 1.5 or 2 stop bits in Asynchronous Mode or 1 or 2 stop bits in Synchronous Mode
— Parity generation and error detection
— Framing error detection, overrun error detection
— MSB- or LSB-first
— Optional break generation and detection
— By 8 or by-16 over-sampling receiver frequency
— Hardware handshaking RTS-CTS
— Receiver time-out and transmitter timeguard
— Optional Multi-drop Mode with address generation and detection
— Optional Manchester Encoding
RS485 with driver control signal
1SO7816, T = 0 or T = 1 Protocols for interfacing with smart cards
— NACK handling, error counter with repetition and iteration limit
IrDA modulation and demodulation
— Communication at up to 115.2 Kbps
* Test Modes 46
— Remote Loopback, Local Loopback, Automatic Echo
9.8.8 Serial Synchronous Controller

* Provides serial synchronous communication links used in audio and telecom applications (with
CODECs in Master or Slave Modes, 12S, TDM Buses, Magnetic Card Reader, etc.)

* Contains an independent receiver and transmitter and a common clock divider

¢ Offers a configurable frame sync and data length

* Receiver and transmitter can be programmed to start automatically or on detection of different
event on the frame sync signal

* Receiver and transmitter include a data signal, a clock signal and a frame synchronization signal

9.8.9 AC97 Controller

¢ Compatible with AC97 Component Specification V2.2
¢ Capable to Interface with a Single Analog Front end
* Three independent RX Channels and three independent TX Channels
— One RX and one TX channel dedicated to the AC97 Analog Front end control
— One RX and one TX channel for data transfers, connected to the DMACA
— One RX and one TX channel for data transfers, connected to the DMACA
Time Slot Assigner allowing to assign up to 12 time slots to a channel
¢ Channels support mono or stereo up to 20 bit sample length - Variable sampling rate AC97 Codec
Interface (48KHz and below)

AIMEL 92

32003M-AVR32-09/09 I ©

9.8.10 Audio Bitstream DAC

* Digital Stereo DAC
¢ Oversampled D/A conversion architecture

— Oversampling ratio fixed 128x

— FIR equalization filter

— Digital interpolation filter: Comb4

— 3rd Order Sigma-Delta D/A converters
Digital bitstream outputs
Parallel interface

¢ Connected to DMA Controller for background transfer without CPU intervention

9.8.11 Timer Counter

* Three 16-bit Timer Counter Channels
* Wide range of functions including:
- Frequency Measurement
— Event Counting
— Interval Measurement
— Pulse Generation
— Delay Timing
— Pulse Width Modulation
— Up/down Capabilities
¢ Each channel is user-configurable and contains:
— Three external clock inputs
— Five internal clock inputs
— Two multi-purpose input/output signals
* Two global registers that act on all three TC Channels
9.8.12 Pulse Width Modulation Controller

* 4 channels, one 16-bit counter per channel
* Common clock generator, providing Thirteen Different Clocks

— A Modulo n counter providing eleven clocks

— Two independent Linear Dividers working on modulo n counter outputs
* Independent channel programming

— Independent Enable Disable Commands

— Independent Clock

— Independent Period and Duty Cycle, with Double Bufferization

— Programmable selection of the output waveform polarity

— Programmable center or left aligned output waveform

AIMEL 93

32003M-AVR32-09/09 I ©

9.8.13 MultiMedia Card Interface

¢ 2 double-channel MultiMedia Card Interface, allowing concurrent transfers with 2 cards
¢ Compatibility with MultiMedia Card Specification Version 2.2
¢ Compatibility with SD Memory Card Specification Version 1.0
¢ Compatibility with SDIO Specification Version V1.0.
¢ Cards clock rate up to Master Clock divided by 2
* Embedded power management to slow down clock rate when not used
¢ Each MCI has two slot, each supporting
— One slot for one MultiMediaCard bus (up to 30 cards) or
— One SD Memory Card
* Support for stream, block and multi-block data read and write
9.8.14 PS/2 Interface

* Peripheral Bus slave
* PS/2 Host
* Receive and transmit capability
¢ Parity generation and error detection
¢ Overrun error detection
9.8.15 USB Interface

¢ Supports Hi (480Mbps) and Full (12Mbps) speed communication
¢ Compatible with the USB 2.0 specification
¢ UTMI Compliant
¢ 7 Endpoints
¢ Embedded Dual-port RAM for Endpoints
¢ Suspend/Resume Logic (Command of UTMI)
¢ Up to Three Memory Banks for Endpoints (Not for Control Endpoint)
¢ 4 KBytes of DPRAM
9.8.16 LCD Controller

¢ Single and Dual scan color and monochrome passive STN LCD panels supported
¢ Single scan active TFT LCD panels supported
* 4-bit single scan, 8-bit single or dual scan, 16-bit dual scan STN interfaces supported
¢ Up to 24-bit single scan TFT interfaces supported
* Up to 16 gray levels for mono STN and up to 4096 colors for color STN displays
* 1, 2 bits per pixel (palletized), 4 bits per pixel (non-palletized) for mono STN
* 1,2, 4, 8 bits per pixel (palletized), 16 bits per pixel (non-palletized) for color STN
* 1, 2, 4, 8 bits per pixel (palletized), 16, 24 bits per pixel (non-palletized) for TFT
¢ Single clock domain architecture
* Resolution supported up to 2048x2048
¢ 2D-DMA Controller for management of virtual Frame Buffer
— Allows management of frame buffer larger than the screen size and moving the view over this
virtual frame buffer
¢ Automatic resynchronization of the frame buffer pointer to prevent flickering
¢ Configurable coefficients with flexible fixed-point representation.

AIMEL %

32003M-AVR32-09/09 I ©

9.8.17 Ethernet MAC

¢ Compatibility with IEEE Standard 802.3
* 10 and 100 Mbits per second data throughput capability
¢ Full- and half-duplex operations
¢ Mil or RMII interface to the physical layer
* Register Interface to address, data, status and control registers
* DMA Interface, operating as a master on the Memory Controller
* Interrupt generation to signal receive and transmit completion
¢ 28-byte transmit and 28-byte receive FIFOs
¢ Automatic pad and CRC generation on transmitted frames
* Address checking logic to recognize four 48-bit addresses
* Support promiscuous mode where all valid frames are copied to memory
¢ Support physical layer management through MDIO interface control of alarm and update
time/calendar data in
9.8.18 Image Sensor Interface

* ITU-R BT. 601/656 8-bit mode external interface support

¢ Support for ITU-R BT.656-4 SAV and EAV synchronization

¢ Vertical and horizontal resolutions up to 2048 x 2048

* Preview Path up to 640*480

* Support for packed data formatting for YCbCr 4:2:2 formats
* Preview scaler to generate smaller size image 50

* Programmable frame capture rate

AIMEL 95

32003M-AVR32-09/09 I ©

10. Power Manager (PM)

Rev: 1.0.2.8
10.1 Features

¢ Controls oscillators and PLLs

* Generates clocks and resets for digital logic

¢ Supports 2 high-speed crystal oscillators

* Supports 2 PLLs

* Supports 32KHz ultra-low power oscillator

¢ On-the fly frequency change of CPU, HSB, and PB frequency
* Sleep modes allow simple disabling of logic clocks, PLLs and oscillators
* Module-level clock gating through maskable peripheral clocks
¢ Wake-up from interrupts or external pin

* Generic clocks with wide frequency range provided

¢ Automatic identification of reset sources

10.2 Description

The Power Manager (PM) controls the oscillators, PLL’s, and generates the clocks and resets in
the device. The PM controls two fast crystal oscillators, as well as two PLL’s, which can multiply
the clock from either oscillator to provide higher frequencies. Additionally, a low-power 32KHz
oscillator is used to generate a slow clock for real-time counters.

The provided clocks are divided into synchronous and generic clocks. The synchronous clocks
are used to clock the main digital logic in the device, namely the CPU, and the modules and
peripherals connected to the HSB, PBA, and PBB buses. The generic clocks are asynchronous
clocks, which can be tuned precisely within a wide frequency range, which makes them suitable
for peripherals that require specific frequencies, such as timers and communication modules.

The PM also contains advanced power-saving features, allowing the user to optimize the power
consumption for an application. The synchronous clocks are divided into four clock domains, for
the CPU, and modules on the HSB, PBA, and PBB buses. The four clocks can run at different
speeds, so the user can save power by running peripherals at a relatively low clock, while main-
taining a high CPU performance. Additionally, the clocks can be independently changed on-the
fly, without halting any peripherals. This enables the user to adjust the speed of the CPU and
memories to the dynamic load of the application, without disturbing or re-configuring active
peripherals.

Each module also has a separate clock, enabling the user to switch off the clock for inactive
modules, to save further power. Additionally, clocks and oscillators can be automatically
swithced off during idle periods by using the sleep instruction on the CPU. The system will return
to normal on occurence of interrupts or an event on the WAKE_N pin.

The Power Manager also cointains a Reset Controller, which collects all possible reset sources,
generates hard and soft resets, and allows the reset source to be identifed by software.

AIMEL 9

32003M-AVR32-09/09 I ©

10.3 Block Diagram

™ Synchronous | synchronous
Clock Generator clocks
Oscillator 0 >
»| PLLO
Oscillator 1 +/—p| PLL1
. _
Generic Clock)
o ——Generic clocksi»
> Generator
A
32 KHz
OSC/PLL Oscillator
Control signals
l—Slow clock=—p
E g Oscillator and Startup
-
OSCEN_N PLL Control Counter
WAKE_N &—» Sleep Controller [e—,_Sl°*P
RESET_N &—»
Power-On
-
Detector Reset Controller resets—p
Soft reset
sources

32003M-AVR32-09/09

ATMEL

Y 5

97

10.4 Product Dependencies
10.4.1 I/0 Lines

The PM provides a number of generic clock outputs, which can be connected to output pins,
multiplexed with PIO lines. The programmer must first program the PIO controller to assign
these pins to their peripheral function. If the I/O pins of the PM are not used by the application,
they can be used for other purposes by the PIO controller.

The PM also has a dedicated WAKE_N pin, as well as a number of pins for oscillators and
PLL’s, which do not require the PIO controller to be programmed.

10.4.2 Interrupt

The PM interrupt line is connected to one of the internal sources of the interrupt controller. Using
the PM interrupt requires the interrupt controller to be programmed first.

10.5 Functional Description
10.5.1 Oscillator 0 and 1 operation

The two main oscillators are designed to be used with an external high frequency crystal, as
shown in Figure 10-1. See Electrical Characteristics for the allowed frequency range. The main
oscillators are enabled by default after reset, and are only switched off in sleep modes, as
described in Section 10.5.6 on page 104. After a power-on reset, or when waking up from a
sleep mode that disabled the main oscillators, the oscillators need 128 slow clock cycles to sta-
bilize on the correct frequency. (') The PM masks the main oscillator outputs during this start-up
period, to ensure that no unstable clocks propagate to the digital logic.

The oscillators can be bypassed by pulling the OSCEN_N pin high. This disables the oscillators,
and an external clock must be applied on XIN. No start-up time applies to this clock.

Figure 10-1. Oscillator connections

Cz

C

Typ. values: C, = Cy, = 22 pF
10.5.2 32 KHz oscillator operation

The 32 KHz oscillator operates similarly to Oscillator 0 and 1 described above, and is used to
generate the slow clock in the device. A 32768 Hz crystal must be connected between XIN32
and XOUT32 as shown in Figure 10-1. The 32 KHz oscillator is is an ultra-low power design, and
remains enabled in all sleep modes except static mode, as described in Section 10.5.6 on page

1. When waking up from Stop mode using external interrupts, the startup time is 32768 slow clock

AIMEL 9

32003M-AVR32-09/09 I ©

10.5.3 PLL operation

32003M-AVR32-09/09

104. The oscillator has a rather long start-up time of 32768 clock cycles, and no clocks will be
generated in the device during this start-up time.

Note that in static sleep mode the startup counter will start at the negedge of reset and not at the
posedge.

Pulling OSCEN_N high will also disable the 32 KHz oscillator, and a 32 KHz clock must be
applied on the XIN32 pin. No start-up time applies to this clock.

The device contains two PLL’s, PLLO and PLL1. These are disabled by default, but can be
enabled to provide high frequency source clocks for synchronous or generic clocks. The PLL’'s
can take either Oscillator 0 or 1 as clock source. Each PLL has an input divider, which divides
the source clock, creating the reference clock for the PLL. The PLL output is divided by a user-
defined factor, and the PLL compares the resulting clock to the reference clock. The PLL will
adjust its output frequency until the two compared clocks are equal, thus locking the output fre-
quency to a multiple of the reference clock frequency.

When the PLL is switched on, or when changing the clock source or multiplication or division
factor for the PLL, the PLL is unlocked and the output frequency is undefined. The PLL clock for
the digital logic is automatically masked when the PLL is unlocked, to prevent connected digital
logic from receiving a too high frequency and thus become unstable.

AIMEL 9

Y 5

Figure 10-2. PLL with control logic and filters

PLLMUL
O.quUt «——1—» Mask |—PLL clock®
Divider
A
PLLDIV LOCK
-
T Input > PLL - Suplr_)?g:sion
Divider
——Osc1 clock
PLLEN PLLCOUNT
PLLOSC PL'-|0PT |
LFT |X|
R
C1 CZ

10.5.3.1 Enabling the PLL

PLLn is enabled by writing the PLLEN bit in the PLLn register. PLLOSC selects Oscillator O or 1
as clock source. The PLLDIV and PLLMUL bitfields must be written with the division and multipli-
cation factor, respectively, creating the PLL frequency:

fprL = (PLLMUL+1) / (PLLDIVA41) # fogc

The LOCKn flag in ISR is set when PLLn becomes locked. The bit will stay high until cleared by
writing 1 to ICR:LOCKn. The Power Manager interrupt can be triggered by writing IER:LOCKn to
1.

Note that the input frequency for the PLL must be within the range inidicated in the Electrical
Characteristics chapter. The input frequency for the PLL relates to the oscillator frequency and
PLLDIV setting as follows:

foun = 2 ® fogc/ (PLLDIV+1)e

Alm L 100

32003M-AVR32-09/09 I ©

10.5.3.2 Lock suppression

When using high division or multiplication factors, there is a possibility that the PLL can give
false lock indications while sweeping to the correct frequency. To prevent false lock indications
from setting the LOCKn flag, the lock indication can be suppressed for a number of slow clock
cycles indicated in the PLLn:COUNT field. Typical start-up times can be found using the Atmel
filter caluclator (see below).

10.5.3.3 Operating range selection

To use PLLn, a passive RC filter should be connected to the LFTn pin, as shown in Figure 10-2.
Filter values depend on the PLL reference and output frequency range. Atmel provides a tool
named “Atmel PLL LFT Filter Calculator AT91”. The PLL for AT32AP7000 can be selected in
this tool by selecting “AT91RM9200 (58A07F)” and leave “lcp = ‘1" (default).

10.5.4 Synchronous clocks

——0sc0 clock:

—PLLO clock

32003M-AVR32-09/09

Oscillator 0 (default) or PLLO provides the source for the main clocks, which is the common root
for the synchronous clocks for the CPU, and HSB, PBA, and PBB modules. The main clock is
divided by an 8-bit prescaler, and each of these four synchronous clocks can run from any tap-
ping of this prescaler, or the undivided main clock, as long as fopy [fygs [fpex @and fpgg=figa-
The synchronous clock source can be changed on-the fly, responding to varying load in the
application. The clock domains can be shut down in sleep mode, as described in "Sleep modes”
on page 104. Additionally, the clocks for each module in the four domains can be individually
masked, to avoid power consumption in inactive modules.

Figure 10-3. Synchronous clock generation

Sleep
instruction
Sleep
Controller
r _________________ -
| _ Il-
10 I
! Main cloc_k-::D_> Mask ‘_|_|._-i_CPU clocks™
0 1
» Prescaler H 1 : F—~=-HSB clocks—®
1 t CPUMASK | [PBAclocks >
: cPUDIV | I [PBB clocks ™
PLLSEL I CPUSEL |
| I
| I

AImEl@ 101

10.5.4.1 Selecting PLL or oscillator for the main clock

The common main clock can be connected to Oscillator 0 or PLLO. By default, the main clock will
be connected to the Oscillator 0 output. The user can connect the main clock to the PLLO output
by writing the PLLSEL bit in the Main Clock Control Register (MCCTRL) to 1. This must only be
done after PLLO has been enabled, otherwise a deadlock will occur. Care should also be taken
that the new frequency of the synchronous clocks does not exceed the maximum frequency for
each clock domain.

10.5.4.2 Selecting synchronous clock division ratio

The main clock feeds an 8-bit prescaler, which can be used to generate the synchronous clocks.
By default, the synchronous clocks run on the undivided main clock. The user can select a pres-
caler division for the CPU clock by writing CKSEL:CPUDIV to 1 and CPUSEL to the prescaling
value, resulting in a CPU clock frequency:

fCPU — fmain / 2(CPUSEL+1)

Similarly, the clock for HSB, PBA, and PBB can be divided by writing their respective bitfields.
To ensure correct operation, frequencies must be selected so that fopy [1fysg [fpga g Also, fre-
quencies must never exceed the specified maximum frequency for each clock domain.

CKSEL can be written without halting or disabling peripheral modules. Writing CKSEL allows a
new clock setting to be written to all synchronous clocks at the same time. It is possible to keep
one or more clocks unchanged by writing the same value a before to the xxxDIV and xxxSEL bit-
fields. This way, it is possible to e.g. scale CPU and HSB speed according to the required
performance, while keeping the PBA and PBB frequency constant.

10.5.4.3 Clock Ready flag

There is a slight delay from CKSEL is written and the new clock setting becomes effective. Dur-
ing this interval, the Clock Ready (CKRDY) flag in ISR will read as 0. If IER:CKRDY is written to
1, the Power Manager interrupt can be triggered when the new clock setting is effective. CKSEL
must not be re-written while CKRDY is 0, or the system may become unstable or hang.

10.5.5 Peripheral clock masking

By default, the clock for all modules are enabled, regardless of which modules are actually being
used. It is possible to disable the clock for a module in the CPU, HSB, PBA, or PBB clock
domain by writing the corresponding bit in the Clock Mask register (CPU/HSB/PBA/PBB) to 0.
When a module is not clocked, it will cease operation, and its registers cannot be read or written.
The module can be re-enabled later by writing the corresponding mask bit to 1.

A module may be connected to several clock domains, in which case it will have several mask
bits.

Table 10-1 contains a list of implemented maskable clocks.

10.5.5.1 Cautionary note

Note that clocks should only be switched off if it is certain that the module will not be used.
Switching off the clock for the internal RAM will cause a problem if the stack is mapped there.
Switching off the clock to the Power Manager (PM), which contains the mask registers, or the
corresponding PB bridge, will make it impossible to write the mask registers again. In this case,
they can only be re-enabled by a system reset.

Alm L 102

32003M-AVR32-09/09 I ©

10.5.5.2 Mask Ready flag

Due to synchronization in the clock generator, there is a slight delay from a mask register is writ-
ten until the new mask setting goes into effect. When clearing mask bits, this delay can usually
be ignored. However, when setting mask bits, the registers in the corresponding module must
not be written until the clock has actually be re-enabled. The status flag MSKRDY in ISR pro-
vides the required mask status information. When writing either mask register with any value,
this bit is cleared. The bit is set when the clocks have been enabled and disabled according to
the new mask setting. Optionally, the Power Manager interrupt can be enabled by writing the
MSKRDY bit in IER.

Alm L 103

32003M-AVR32-09/09 I ©

Table 10-1. Maskable module clocks in AT32AP7000.

Bit CPUMASK HSBMASK PBAMASK PBBMASK
0 PICO EBI SPIO PM/EIC/RTC/WDT
1 - PBA SPI1 INTC
2 - PBB TWI HMATRIX
3 - HRAMC USARTO TCO
4 - HSB-HSB Bridge USART1 TCA
5 - ISI USART2 PWM
6 - uSB USART3 MACBO
7 - LCDC SSCo MACBH1
8 - MACBO SSC1 DAC
9 - MACB1 SSC2 MCI
10 - DMA PIOA AC97C
11 - - PIOB 1SI
12 - - PIOC uUSB
13 - - PIOD SMC
14 - - PIOE SDRAMC
15 - - PSIF ECC
16 - - PDC -

31:17 - - - -

10.5.6 Sleep modes

In normal operation, all clock domains are active, allowing software execution and peripheral
operation. When the CPU is idle, it is possible to switch off the CPU clock and optionally other
clock domains to save power. This is activated by the sleep instruction, which takes the sleep
mode index number as argument.

10.5.6.1 Entering and exiting sleep modes

32003M-AVR32-09/09

The sleep instruction will halt the CPU and all modules belonging to the stopped clock domains.
The modules will be halted regardless of the bit settings of the mask registers.

Oscillators and PLL’s can also be switched off to save power. These modules have a relatively
long start-up time, and are only switched off when very low power consumption is required.

The CPU and affected modules are restarted when the sleep mode is exited. This occurs when
an interrupt triggers, or the WAKE_N pin is asserted. Note that even though an interrupt is
enabled in sleep mode, it may not trigger if the source module is not clocked.

Alm L 104

Y 5

10.5.6.2

10.5.6.3

32003M-AVR32-09/09

Supported sleep modes

The following sleep modes are supported. These are detailed in Table 10-2.

e|ldle: The CPU is stopped, the rest of the chip is operating. Wake-up sources are any interrupt,
or WAKE_N pin.

*Frozen: The CPU and HSB modules are stopped, peripherals are operating. Wake-up sources
are any interrupt from PB modules, or WAKE_N pin.

*Standby: All synchronous clocks are stopped, but oscillators and PLL’s are running, allowing
quick wake-up to normal mode. Wake-up sources are RTC or external interrupt, or WAKE_N

pin.

*Stop: As Standby, but Oscillator 0 and 1, and the PLL’s are stopped. 32 KHz oscillator and
RTC/WDT still operates. Wake-up sources are RTC or external interrupt, or WAKE_N pin.

eStatic: All oscillators and clocks are stopped. Wake-up sources are external interrupt or
WAKE_N pin.e

Table 10-2. Sleep modes

PBA,B + Osc0,1 + Osc32 +
Index | Sleep Mode | CPU HSB GCLK PLLO,1 RTC/WDT
0 Idle Off On On On On
1 Frozen Off Off On On On
2 Standby Off Off Off On On
3 Stop Off Off Off Off On
5 Static Off Off Off Off Off

Precautions when entering sleep mode

Modules communicating with external circuits should normally be disabled before entering a
sleep mode that will stop the module operation. This prevents erratic behavior when entering or
exiting sleep mode. Please refer to the relevant module documentation for recommended
actions.

Communication between the synchronous clock domains is disturbed when entering and exiting
sleep modes. This means that bus transactions are not allowed between clock domains affected
by the sleep mode. The system may hang if the bus clocks are stopped in the middle of a bus
transaction.

The CPU and caches are automatically stopped in a safe state to ensure that all CPU bus oper-
ations are complete when the sleep mode goes into effect. Thus, when entering Idle mode, no
further action is necessary.

When entering a deeper sleep mode than ldle mode, all other HSB masters must be stopped
before entering the sleep mode. Also, if there is a chance that any PB write operations are
incomplete, the CPU should perform a read operation from any register on the PB bus before
executing the sleep instruction. This will stall the CPU while waiting for any pending PB opera-
tions to complete.

The Power manager will normally turn of all debug related clocks in the system in the static sleep
mode, making it impossible for a debugger to communicate with the system. If a

Alm L 105

Y 5

NEXUS_ACCESS or a MEMORY_ACCESS JTAG command is loaded into the instruction regis-
ter before entering sleep mode some clocks are left running to enable debugging of the system.
This will increase the power consumption of the device. If the part entered static mode without a
NEXUS_ACCESS ot MEMORY_ACCESS instruction loaded into the JTAG instruction register
an external reset is the only way for the debugger to get the part out of the sleep mode.

When not debugging a program and using sleep modes the JTAG should always have the
IDCODE instruction loaded into the JTAG instruction register and the OCD system should be
disabled. Otherwise some clocks may be left running, increasing the power consumption.

10.5.7 Generic clocks

Timers, communication modules, and other modules connected to external circuitry may require
specific clock frequencies to operate correctly. The Power Manager contains an implementation
defined number of generic clocks, that can provide a wide range of accurate clock frequencies.

Each generic clock module runs from either Oscillator 0 or 1, or PLLO or 1. The selected source
can optionally be divided by any even integer up to 512. Each clock can be independently
enabled and disabled, and is also automatically disabled along with peripheral clocks by the
Sleep Controller.

Sleep
Controller
——0sc0 clock: Mask —Generic Clock—p»
——0sc1 clock: .
——PLLO clock > Divider
——PLL1 clock: ?
? DIVEN CEN
PLLSEL
OSCSEL DIV |

Figure 10-4. Generic clock generation

10.5.7.1 Enabling a generic clock

A generic clock is enabled by writing the CEN bit in GCCTRL to 1. Each generic clock can use
either Oscillator 0 or 1 or PLLO or 1 as source, as selected by the PLLSEL and OSCSEL bits.
The source clock can optionally be divided by writing DIVEN to 1 and the division factor to DIV,
resulting in the output frequency:

fGCLK = fSRC / (2*(D|V+1))

Alm L 106

32003M-AVR32-09/09 I ©

10.5.7.2

10.5.7.3

10.5.7.4

10.5.8

10.5.9

32003M-AVR32-09/09

Disabling a generic clock

The generic clock can be disabled by writing CEN to 0 or entering a sleep mode that disables
the PB clocks. In either case, the generic clock will be switched off on the first falling edge after
the disabling event, to ensure that no glitches occur. If CEN is written to 0, the bit will still read as
1 until the next falling edge occurs, and the clock is actually switched off. When writing CEN to 0,
the other bits in GCCTRL should not be changed until CEN reads as 0, to avoid glitches on the
generic clock.

When the clock is disabled, both the prescaler and output are reset.

Changing clock frequency

When changing generic clock frequency by writing GCCTRL, the clock should be switched off by
the procedure above, before being re-enabled with the new clock source or division setting. This
prevents glitches during the transition.

Generic clock implementation

In AT32AP7000, there are 8 generic clocks. These are allocated to different functions as shown
in Table 10-3.

Table 10-3. Generic clock allocation

Clock number Function

0 GCLKO pin

1 GCLK1 pin

GCLK2 pin

GCLKS pin

GCLK4 pin

Reserved for internal use
DAC

N oo~ WD

LCD Controller

Divided PB clocks

The clock generator in the Power Manager provides divided PBA and PBB clocks for use by
peripherals that require a prescaled PB clock. This is described in the documentation for the rel-
evant modules.

The divided clocks are not directly maskable, but are stopped in sleep modes where the PB
clocks are stopped.

Debug operation

During a debug session, the user may need to halt the system to inspect memory and CPU reg-
isters. The clocks normally keep running during this debug operation, but some peripherals may
require the clocks to be stopped, e.g. to prevent timer overflow, which would cause the program
to fail. For this reason, peripherals on the PBA and PBB buses may use “debug qualified” PB
clocks. This is described in the documentation for the relevant modules. The divided PB clocks
are always debug qualified clocks.

Alm L 107

Y 5

Debug qualified PB clocks are stopped during debug operation. The debug system can option-
ally keep these clocks running during the debug operation. This is described in the
documentation for the On-Chip Debug system.

Alm L 108

32003M-AVR32-09/09 I ©

10.5.10 Reset Controller

The Reset Controller collects the various reset sources in the system and generates hard and
soft resets for the digital logic.

The device contains a Power-On Detector, which keeps the system reset until power is stable.
This eliminates the need for external reset circuitry to guarantee stable operation when powering
up the device.

It is also possible to reset the device by asserting the RESET_N pin. This pin has an internal pul-
lup, and does not need to be driven externally when negated.

Table 10-4 lists these and other reset sources supported by the Reset Controller.

RC_R|CAUSE
RESET_N X—>
CPU, HSB,
Power-On Soft Reset—9> ppa PBB
Detector : Reset
Controller
NTAE > Hord Reseiie OCD, RTC/WD1
- ardrese Clock Generato
DBR >
— Watchdog Reset———»

Figure 10-5. Reset Controller block diagram

Reset sources are divided into hard and soft resets. Hard resets imply that the system could
have become unstable, and virtually all logic will be reset. The clock generator, which also con-
trols the oscillators, will also be reset. If the device is reset due to a power-on reset, or reset
occurred when the device was in a sleep mode that disabled the oscillators, the normal oscillator
startup time will apply.

A soft reset will reset most digital logic in the device, such as CPU, HSB, and PB modules, but
not the OCD system, clock generator, Watchdog Timer and RTC, allowing some functions,
including the oscillators, to remain active during the reset. The startup time from a soft reset is
thus negligible. Note that all PB registers are reset, except those in the RTC/WDT. The
MCCTRL and CKSEL registers are reset, and the device will restart using Oscillator 0 as clock
source for all synchronous clocks.

In addition to the listed reset types, the JTAG can keep parts of the device statically reset
through the JTAG Reset Register. See JTAG documentation for details.

Alm L 109

32003M-AVR32-09/09 I ©

32003M-AVR32-09/09

The cause of the last reset can be read from the RC_RCAUSE register. This register contains
one bit for each reset source, and can be identified during the boot sequence of an application to
determine the proper action to be taken.

Table 10-4. Reset types

Reset source Description Type
Power-on Reset Supply voltage below the power-on reset detector threshold Hard
voltage

External RESET_N pin asserted Hard
NanoTrace Access See On-Chip Debug documentation. Soft
Error

Watchdog Timer See watchdog timer documentation. Soft
OCD See On-Chip Debug documentation Soft

ATMEL

Y 5

110

10.6 User Interface

Offset Register Register Name Access Reset
0x00 Main Clock Control MCCTRL Read/Write 0x0
0x04 Clock Select CKSEL Read/Write 0x0
0x08 CPU Clock Mask CPUMASK Read/Write Impl. defined
0x0C HSB Clock Mask HSBMASK Read/Write Impl. defined
0x10 PBA Clock Mask PBAMASK Read/Write Impl. defined
0x14 PBB Clock Mask PBBMASK Read/Write Impl. defined
0x20 PLLO Control PLLO Read/Write 0x0
0x24 PLL1 Control PLL1 Read/Write 0x0
0x40 Interrupt Enable IER Write-only 0x0
Ox44 Interrupt Disable IDR Write-only 0x0
0x48 Interrupt Mask IMR Read-only 0x0
0x4C Interrupt Status ISR Read-only 0x0
0x50 Interrupt Clear ICR Write-only 0x0
0x60 Generic Clock Control 0 GCCTRLO Read/Write 0x0
0x64 Generic Clock Control 1 GCCTRL1 Read/Write 0x0
0x68 Generic Clock Control 2 GCCTRL2 Read/Write 0x0
0x6C Generic Clock Control 3 GCCTRL3 Read/Write 0x0
0x70 Generic Clock Control 4 GCCTRL4 Read/Write 0x0
0x74 Generic Clock Control 5 GCCTRL5 Read/Write 0x0
0x78 Generic Clock Control 6 GCCTRL6 Read/Write 0x0
0x7C Generic Clock Control 7 GCCTRL7 Read/Write 0x0

0x80 - 0xBC Reserved

0xCO0 Reset Cause RCAUSE Read

AIMEL "

32003M-AVR32-09/09 I ©

10.6.1 Main Clock Control

Name: MCCTRL

Access Type: Read/Write
31 30 29 28 27 26 25 24

| | | | - | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

| | | | R | | |
7 6 5 4 3 2 1 0

e o O . T~

e PLLSEL: PLL Select
0: Oscillator 0 is source for the main clock
1: PLLO is source for the main clock

A ||'|E|,® 112

32003M-AVR32-09/09

10.6.2 Clock Select

Name: CKSEL

Access Type: Read/Write
31 30 29 28 27 26 25 24

‘ PBBDIV ‘ - ‘ - - - PBBSEL ‘
23 22 21 20 19 18 17 16

‘ PBADIV ‘ - ‘ - - - PBASEL ‘
15 14 13 12 11 10 9 8

‘ HSBDIV ‘ - ‘ - - - HSBSEL ‘
7 6 5 4 3 2 1 0

‘ CPUDIV ‘ - ‘ - - - CPUSEL ‘

PBBDIV, PBBSEL: PBB Division and Clock Select

PBBDIV = 0: PBB clock equals main clock.

PBBDIV = 1: PBB clock equals main clock divided by 2(PBBSEL+D),
PBADIV, PBASEL: PBA Division and Clock Select

PBADIV = 0: PBA clock equals main clock.

PBADIV = 1: PBA clock equals main clock divided by 2(PBASEL+D),
HSBDIV, HSBSEL: HSB Division and Clock Select

HSBDIV = 0: HSB clock equals main clock.

HSBDIV = 1: HSB clock equals main clock divided by 2HSBSEL+1),
CPUDIV, CPUSEL: CPU Division and Clock Select

CPUDIV = 0: CPU clock equals main clock.

CPUDIV = 1: CPUclock equals main clock divided by 2(CPUSEL+1),

Note that if xxxDIV is written to 0, xxxSEL should also be written to 0 to ensure correct operation.

Also note that writing this register clears ISR:CKRDY. The register must not be re-written until CKRDY goes high.

32003M-AVR32-09/09

ATMEL

113

10.6.3 Clock Mask

Name: CPU/HSB/PBA/PBBMASK

Access Type: Read/Write
31 30 29 28 27 26 25 24

‘ MASK[31:24] ‘
23 22 21 20 19 18 17 16

| MASKI[23:16] |
15 14 13 12 11 10 9 8

| MASKI[15:8] |
7 6 5 4 3 2 1 0

| MASK[7:0] |

* MASK: Clock Mask
If bit n is cleared, the clock for module n is stopped. If bit n is set, the clock for module n is enabled according to the current
power mode. The number of implemented bits in each mask register, as well as which module clock is controlled by each bit, is
implementation dependent.

AIMEL 14

32003M-AVR32-09/09 I ©

10.6.4 PLL Control

Name: PLLO,1

Access Type: Read/Write
31 30 29 28 27 26 25 24

‘ PLLTEST - PLLCOUNT ‘
23 22 21 20 19 18 17 16

‘ PLLMUL ‘
15 14 13 12 11 10 9 8

‘ PLLDIV ‘
7 6 5 4 3 2 1 0

‘ - - - PLLOPT PLLOSC PLLEN ‘

* PLLTEST: PLL Test
Reserved for internal use. Always write to 0.
¢ PLLCOUNT: PLL Count
Specifies the number of slow clock cycles before ISR:LOCKn will be set after PLLn has been written, or after PLLn has been
automatically re-enabled after exiting a sleep mode.
¢ PLLMUL: PLL Multiply Factor
¢ PLLDIV: PLL Division Factor
These bitfields determine the ratio of the PLL output frequency to the source oscillator frequency:
for L = (PLLMUL+1)/(PLLDIV+1) ® fogc
e PLLOPT: PLL Option
This field should be written to 100.
Other values are reserved.
¢ PLLOSC: PLL Oscillator Select
0: Oscillator 0 is the source for the PLL.
1: Oscillator 1 is the source for the PLL.
e PLLEN: PLL Enable
0: PLL is disabled.
1: PLL is enabled.

AIMEL 118

32003M-AVR32-09/09 I ©

10.6.5 Interrupt Enable/Disable/Mask/Status/Clear
Name: IER/IDR/IMR/ISR/ICR
Access Type: IER/IDR/ICR: Write-only

IMR/ISR: Read-only

31 30 29 28 27 26 25 24
- r - r-r - r - ;- [- [- |
23 22 21 20 19 18 17 16
- - r-r - r - f;r - [- [- |
15 14 13 12 11 10 9 8
- r - r - r - +r - - [- 7 - |
7 6 5 4 3 2 1 0
‘ - ‘MSKRDY‘ CKRDY ‘ VMRDY‘ VOK ‘ WAKE ‘ LOCK1 ‘ LOCKO ‘

MSKRDY: Mask Ready
0: Either xxxMASK register has been written, and clocks are not yet enabled or disabled according to the new mask value.
1: Clocks are enabled and disabled as indicated in the xxxMASK registers.
Note: Writing ICR:MSKRDY to 1 has no effect.
CKRDY: Clock Ready
0: The CKSEL register has been written, and the new clock setting is not yet effective.
1: The synchronous clocks have frequencies as indicated in the CKSEL register.
Note: Writing ICR:CKRDY to 1 has no effect.
VMRDY, VOK
These bits are for internal use only. In ISR, the value of these bits is undefined. In IER, these bits should be written to 0.
WAKE: Wake Pin Asserted
0: The WAKE_N pin is not asserted, or has been asserted for less than one PB clock period.
1: The WAKE_N pin is asserted for longer than one PB clock period.
LOCK1: PLL1 locked
LOCKO: PLLO locked
0: The PLL is unlocked, and cannot be used as clock source.
1: The PLL is locked, and can be used as clock source.

The effect of writing or reading the bits listed above depends on which register is being accessed:

¢ IER (Write-only)

0: No effect

1: Enable Interrupt
¢ IDR (Write-only)

0: No effect

1: Disable Interrupt

AIMEL 116

32003M-AVR32-09/09 I ©

* IMR (Read-only)

0: Interrupt is disabled

1: Interrupt is enabled
* ISR (Read-only)

0: An interrupt event has occurred

1: An interrupt even has not occurred
¢ ICR (Write-only)

0: No effect

1: Clear interrupt event

AIMEL "7

32003M-AVR32-09/09 I ©

10.6.6 Generic Clock Control

Name: GCCTRLO... GCCTRL7

Access Type: Read/Write
31 30 29 28 27 26 25 24

. - - r - r - r - ;- ;- §; - |
23 22 21 20 19 18 17 16

. - - - +r - +r - - [- [- |
15 14 13 12 11 10 9 8

| DIV[7:0] |
7 6 5 4 3 2 1 0

‘ - - - DIVEN - CEN PLLSEL OSCSEL ‘

There is one GCCTRL register per generic clock in the design.

¢ DIV: Division Factor
DIVEN: Divide Enable
0: The generic clock equals the undivided source clock.
1: The generic clock equals the source clock divided by 2*(DIV+1).
CEN: Clock Enable
0: Clock is stopped.
1: Clock is running.
PLLSEL: PLL Select
0: Oscillator is source for the generic clock.
1: PLL is source for the generic clock.
OSCSEL: Oscillator Select
0: Oscillator (or PLL) 0 is source for the generic clock.
1: Oscillator (or PLL) 1is source for the generic clock.

AIMEL 118

32003M-AVR32-09/09 I ©

10.6.7 Reset Cause

Name: RC_RCAUSE

Access Type: Read-only
31 30 29 28 27 26 25 24

. - ! - r - r -+ - ;r - 1@ - [- |
23 22 21 20 19 18 17 16

. - - - +r - +r - - [- [- |
15 14 13 12 11 10 9 8

. - r - - +r - +r - - [- [- |
7 6 5 4 3 2 1 0

‘ - ‘ - ‘ SERP ‘ JTAG ‘ WDT ‘ EXT ‘ - ‘ POR ‘

SERP: Serious Problem Error
This bit is set if a reset occured due to a serious problem in the CPU, like Nanotrace access error, for instance.
JTAG: JTAG Reset
This bit is set if a reset occurred due to a JTAG reset.
WDT: Watchdog Timer
This bit is set if a reset occurred due to a timeout of the Watchdog Timer.
EXT: External Reset
This bit is set if a reset occurred due to assertion of the RESET_N pin.
POR: Power-On Detector
This bit is set if a reset was caused by the Power-On Detector.

AIMEL 119

32003M-AVR32-09/09 I ©

11. Real Time Counter (RTC)

Rev: 1.0.1.1
11.1 Features

* 32-bit real-time counter with 16-bit prescaler
¢ Clocked from 32 kHz oscillator
¢ High resolution: Max count frequency 16KHz
* Long delays
— Max timeout 272 years
* Extremely low power consumption
¢ Available in all sleep modes except Deepdown
¢ Optional wrap at max value
¢ Interrupt on wrap

11.2 Description

The Real Time Counter (RTC) enables periodic interrupts at long intervals, or accurate mea-
surement of real-time sequences. The RTC is fed from a 16-bit prescaler, which is clocked from
the 32 kHz oscillator. Any tapping of the prescaler can be selected as clock source for the RTC,
enabling both high resolution and long timeouts. The prescaler cannot be written directly, but
can be cleared by the user.

The RTC can generate an interrupt when the counter wraps around the top value of
OxFFFFFFFF. Optionally, the RTC can wrap at a lower value, producing accurate periodic
interrupts.

11.3 Block Diagram

Figure 11-1. Real Time Counter module block diagram

RTC_TOP

!

—32 KHz—»{ 16-bit Prescaler ——| 32-bit counter || TOP| —IRQ—p

{

RTC_VAL

11.4 Product Dependencies
11.4.1 I/O Lines

None.

Alm L 120

32003M-AVR32-09/09 I ©

11.4.2 Power Management

The RTC is continously clocked, and remains operating in all sleep modes except Static.

1143 Interrupt

The RTC interrupt line is connected to one of the internal sources of the interrupt controller.
Using the RTC interrupt requires the interrupt controller to be programmed first.

11.4.4 Debug Operation

The RTC prescaler and watchdog timer are frozen during debug operation, unless the OCD sys-
tem keeps peripherals running in debug operation.

11.5 Functional Description
11.5.1 RTC operation
11.5.1.1 Source clock

The RTC is enabled by writing the EN bit in the CTRL register. This also enables the clock for
the prescaler. The PSEL bitfield in the same register selects the prescaler tapping, selecting the
source clock for the RTC:

fRTC = 2-(PSEL+1) * 32KHZ

Note that if the RTC is used in stop mode, PSEL must be 2 or higher to ensure no ticks are
missed when entering or leaving sleep mode.

11.5.1.2 Counter operation
The RTC count value can be read from or written to the register VAL. The prescaler cannot be
written directly, but can be reset by writing the strobe PCLR in CTRL.
When enabled, the RTC will then up-count until it reaches OxFFFFFFFF, and then wrap to 0xO0.

Writing CTRL: TOPEN to one causes the RTC to wrap at the value written to TOP. The status bit
TOPI in ISR is set when this occurs.

11.5.1.3 RTC Interrupt

Writing the TOPI bit in IER enables the RTC interrupt, while writing the corresponding bit in IDR
disables the RTC interrupt. IMR can be read to see whether or not the interrupt is enabled. If
enabled, an interrupt will be generated if the TOPI flag in ISR is set. The flag can be cleared by
writing TOPI in ICR to one.

Alm L 121

32003M-AVR32-09/09 I ©

11.6 User Interface

Offset Register Register Name Access Reset
0x00 RTC Control CTRL Read/Write 0x0
0x04 RTC Value VAL Read/Write 0x0
0x08 RTC Top TOP Read/Write 0x0
0x10 RTC Interrupt Enable IER Write-only 0x0
0x14 RTC Interrupt Disable IDR Write-only 0x0
0x18 RTC Interrupt Mask IMR Read-only 0x0
0x1C RTC Interrupt Status ISR Read-only 0x0
0x20 RTC Interrupt Clear ICR Write-only 0x0

AIMEL 122

32003M-AVR32-09/09 I ©

11.6.1 RTC Control

Name: CTRL

Access Type: Read/Write
31 30 29 28 27 26 25 24

| | | | - | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

‘ - ‘ - ‘ - ‘ - ‘ PSEL[3:0] ‘
7 6 5 4 3 2 1 0

‘ - ‘ - ‘ - ‘ - ‘ - TOPEN PCLR EN ‘

¢ PSEL: Prescale Select
Selects prescaler bit PSEL as source clock for the RTC.
* TOPEN: Top Enable
0: RTC wraps at OxFFFFFFFF
1: RTC wraps at RTC_TOP
* PCLR: Prescaler Clear
Writing this strobe clears the prescaler. Note that this also resets the watchdog timer.
* EN: Enable
0: RTC is disabled
1: RTC is enabled

A ||'|E|,® 123

32003M-AVR32-09/09

11.6.2 RTC Value

Name: VAL

Access Type: Read/Write
31 30 29 28 27 26 25 24

‘ VAL[31:24] ‘
23 22 21 20 19 18 17 16

| VAL[23:16] |
15 14 13 12 11 10 9 8

‘ VAL[15:8] ‘
7 6 5 4 3 2 1 0

‘ VAL[7:0] ‘

¢ VAL: RTC Value
This value is incremented on every rising edge of the source clock.

AIMEL 124

32003M-AVR32-09/09 I ©

11.6.3 RTC Top

Name: TOP

Access Type: Read/Write
31 30 29 28 27 26 25 24

| TOP[31:24] |
23 22 21 20 19 18 17 16

| TOP[23:16] |
15 14 13 12 11 10 9 8

\ TOP[15:8] \
7 6 5 4 3 2 1 0

‘ TOP[7:0] ‘

¢ TOP: RTC Top Value
VAL wraps at this value if CTRL:TOPEN is 1.

A “"El'® 125

32003M-AVR32-09/09

11.6.4 RTC Interrupt Enable/Disable/Mask/Status/Clear
Name: IER/IDR/IMR/ISR/ICR
Access Type: IER/IDR/ICR: Write-only

IMR/ISR: Read-only

31 30 29 28 27 26 25 24
.- - r - r - - - [- [- |
23 22 21 20 19 18 17 16
. - - r - r - - - [- [- |
15 14 13 12 11 10 9 8
. - r - r - r -+ - ;r - ;@ - [- |
7 6 5 4 3 2 1 0
e e e s O S

¢ TOPI: Top Interrupt
VAL has wrapped at its TOP.

The effect of writing or reading this bit depends on which register is being accessed:

IER (Write-only)
0: No effect
1: Enable Interrupt
IDR (Write-only)
0: No effect
1: Disable Interrupt
IMR (Read-only)
0: Interrupt is disabled
1: Interrupt is enabled
ISR (Read-only)
0: An interrupt event has not occurred
1: An interrupt event has occurred. Note that this is only set when the RTC is configured to wrap at TOP.
ICR (Write-only)
0: No effect
1: Clear interrupt event

AIMEL 126

32003M-AVR32-09/09 I ©

12. Watchdog Timer (WDT)

Rev: 1.0.1
12.1 Features

¢ Watchdog timer with 16-bit prescaler
12.2 Description

The Watchdog Timer (WDT) is fed from a 16-bit prescaler, which is clocked from the 32 kHz
oscillator. Any tapping of the prescaler can be selected as clock source for the WDT.The watch-
dog timer must be periodically reset by software within the timeout period, ot herwise, the device
is reset and starts executing from the boot vector. This allows the device to recover from a con-
dition that has caused the system to be unstable.

12.3 Block Diagram

Figure 12-1. Real Time Counter module block diagram

WDT _CLR
, W atchdog W atchdog
32 KHz—=| 16-bit Prescaler > Detector —— reset ™
WDT_ CTRL

12.4 Product Dependencies
12.4.1 I/O Lines

None
12.4.2 Power Management

The WDT is continously clocked, and remains operating in all sleep modes. However, if the
WDT is enabled and the user tries to enter a sleepmode where the 32 KHz oscillator is turned off
the system will enter the STOP sleepmode instead. This is to ensure the WDT is still running.

12.4.3 Debug Operation

The watchdog timer is frozen during debug operation, unless the OCD system keeps peripherals
running in debug operation.

Alm L 127

32003M-AVR32-09/09 I ©

12.5 Functional Description
12.5.1 Watchdog Timer

The WDT is enabled by writing the EN bit in the CTRL register. This also enables the clock for
the prescaler. The PSEL bitfield in the same register selects the watchdog timeout period:

Tyor = 2F%F1 ¥ 30.518s

To avoid accidental disabling of the watchdog, the CTRL register must be written twice, first with
the KEY field set to 0x55, then OxAA without changing the other bitfields. Failure to do so will
cause the write operation to be ignored, and CTRL does not change value.

The CLR register must be written with any value with regular intervals shorter than the watchdog
timeout period. Otherwise, the device will receive a soft reset, and the code will start executing
from the boot vector.

Alm L 128

32003M-AVR32-09/09 I ©

12.6 User Interface

Offset Register Register Name Access Reset
0x30 WDT Control CTRL Read/Write 0x0
0x34 WDT Clear CLR Write-only 0x0

12.6.1 WDT Control

Name: CTRL

Access Type: Read/Write
31 30 29 28 27 26 25 24

‘ KEY[7:0] ‘
23 22 21 20 19 18 17 16

[N B B - -]
15 14 13 12 11 10 9 8

‘] ‘] ‘] ‘] \ PSEL[3:0] ‘
7 6 5 4 3 2 1 0

[S B R - - |

e KEY

This bitfield must be written twice, first with key value 0x55, then 0xAA, for a write operation to be effective. This bitfield always
reads as zero.

¢ PSEL: Prescale Select

Prescaler bit PSEL is used as watchdog timeout period.
e EN: WDT Enable

0: WDT is disabled.

1: WDT is enabled.

AIMEL 129

32003M-AVR32-09/09 I ©

12.6.2 WDT Clear

Name: CLR
Access Type: Write-only

When the watchdog timer is enabled, this register must be periodically written, with any value, within the watchdog timeout
period, to prevent a watchdog reset.

Alm L 130

32003M-AVR32-09/09 I ©

13. Interrupt Controller (INTC)

Rev: 1.0.0.4
13.1 Features

¢ Autovectored low latency interrupt service with programmable priority
— 4 priority levels for regular, maskable interrupts
— One Non-Maskable Interrupt
* Up to 64 groups of interrupts with up to 32 interrupt requests in each group
13.2 Overview

The INTC collects interrupt requests from the peripherals, prioritizes them, and delivers an inter-
rupt request and an autovector to the CPU. The AVR32 architecture supports 4 priority levels for
regular, maskable interrupts, and a Non-Maskable Interrupt (NMI).

The INTC supports up to 64 groups of interrupts. Each group can have up to 32 interrupt request
lines, these lines are connected to the peripherals. Each group has an Interrupt Priority Register
(IPR) and an Interrupt Request Register (IRR). The IPRs are used to assign a priority level and
an autovector to each group, and the IRRs are used to identify the active interrupt request within
each group. If a group has only one interrupt request line, an active interrupt group uniquely
identifies the active interrupt request line, and the corresponding IRR is not needed. The INTC
also provides one Interrupt Cause Register (ICR) per priority level. These registers identify the
group that has a pending interrupt of the corresponding priority level. If several groups have a
pending interrupt of the same level, the group with the lowest number takes priority.

13.3 Block Diagram

Figure 13-1 gives an overview of the INTC. The grey boxes represent registers that can be
accessed via the user interface. The interrupt requests from the peripherals (IREQn) and the
NMI are input on the left side of the figure. Signals to and from the CPU are on the right side of
the figure.

Alm L 131

32003M-AVR32-09/09 I ©

AT32AP7000

Figure 13-1. INTC Block Diagram

Interrupt Controller CPU
NMIREQ
Masks SREG
Y Masks
> I[3-0]M
= ValRegN GM
R -
==
[1| RRn - ' ' INTLEVEL
- | Request : ' L) "
IREQ63 > Masking : : 5]
ValReq1 - =
e e < I =1
IREQ32 H > IPR1 i AUTOVECTOR
| ®e g
IREQ31 - ValReq0 -
|EE§% I |- OR TNT_level _|‘:)
IReSs == IPRO
1| reo —
IRR Registers IPR Registers ICR Registers

13.4 Product Dependencies

In order to use this module, other parts of the system must be configured correctly, as described
below.

13.4.1 Power Management

If the CPU enters a sleep mode that disables clocks used by the INTC, the INTC will stop func-
tioning and resume operation after the system wakes up from sleep mode.

13.4.2 Clocks

The clock for the INTC bus interface (CLK_INTC) is generated by the Power Manager. This
clock is enabled at reset, and can be disabled in the Power Manager.

13.4.3 Debug Operation

When an external debugger forces the CPU into debug mode, the INTC continues normal
operation.

13.5 Functional Description

All of the incoming interrupt requests (IREQs) are sampled into the corresponding Interrupt
Request Register (IRR). The IRRs must be accessed to identify which IREQ within a group that
is active. If several IREQs within the same group are active, the interrupt service routine must
prioritize between them. All of the input lines in each group are logically ORed together to form
the GrpReqgN lines, indicating if there is a pending interrupt in the corresponding group.

The Request Masking hardware maps each of the GrpReq lines to a priority level from INTO to
INT3 by associating each group with the Interrupt Level (INTLEVEL) field in the corresponding
Interrupt Priority Register (IPR). The GrpReq inputs are then masked by the mask bits from the
CPU status register. Any interrupt group that has a pending interrupt of a priority level that is not
masked by the CPU status register, gets its corresponding ValReq line asserted.

Alm L 132

32003M-AVR32-09/09 I ©

Masking of the interrupt requests is done based on five interrupt mask bits of the CPU status
register, namely Interrupt Level 3 Mask (I3M) to Interrupt Level 0 Mask (I0M), and Gilobal Inter-
rupt Mask (GM). An interrupt request is masked if either the GM or the corresponding interrupt
level mask bit is set.

The Prioritizer hardware uses the ValReq lines and the INTLEVEL field in the IPRs to select the
pending interrupt of the highest priority. If an NMI interrupt request is pending, it automatically
gets the highest priority of any pending interrupt. If several interrupt groups of the highest pend-
ing interrupt level have pending interrupts, the interrupt group with the highest number is
selected.

The INTLEVEL and handler autovector offset (AUTOVECTOR) of the selected interrupt are
transmitted to the CPU for interrupt handling and context switching. The CPU does not need to
know which interrupt is requesting handling, but only the level and the offset of the handler
address. The IRR registers contain the interrupt request lines of the groups and can be read via
user interface registers for checking which interrupts of the group are actually active.

13.5.1 Non-Maskable Interrupts

A NMI request has priority over all other interrupt requests. NMI has a dedicated exception vec-
tor address defined by the AVR32 architecture, so AUTOVECTOR is undefined when
INTLEVEL indicates that an NMI is pending.

13.5.2 CPU Response

When the CPU receives an interrupt request it checks if any other exceptions are pending. If no
exceptions of higher priority are pending, interrupt handling is initiated. When initiating interrupt
handling, the corresponding interrupt mask bit is set automatically for this and lower levels in sta-
tus register. E.g, if an interrupt of level 3 is approved for handling, the interrupt mask bits I13M,
I2M, I1M, and IOM are set in status register. If an interrupt of level 1 is approved, the masking
bits 1M and IOM are set in status register. The handler address is calculated by adding
AUTOVECTOR to the CPU system register Exception Vector Base Address (EVBA). The CPU
will then jump to the calculated address and start executing the interrupt handler.

Setting the interrupt mask bits prevents the interrupts from the same and lower levels to be
passed through the interrupt controller. Setting of the same level mask bit prevents also multiple
requests of the same interrupt to happen.

It is the responsibility of the handler software to clear the interrupt request that caused the inter-
rupt before returning from the interrupt handler. If the conditions that caused the interrupt are not
cleared, the interrupt request remains active.

13.5.3 Clearing an Interrupt Request

Clearing of the interrupt request is done by writing to registers in the corresponding peripheral
module, which then clears the corresponding NMIREQ/IREQ signal.

The recommended way of clearing an interrupt request is a store operation to the controlling
peripheral register, followed by a dummy load operation from the same register. This causes a
pipeline stall, which prevents the interrupt from accidentally re-triggering in case the handler is
exited and the interrupt mask is cleared before the interrupt request is cleared.

Alm L 133

32003M-AVR32-09/09 I ©

13.6 User Interface

Table 13-1. INTC Register Memory Map

Offset Register Register Name Access Reset
0x000 Interrupt Priority Register 0 IPRO Read/Write 0x00000000
0x004 Interrupt Priority Register 1 IPR1 Read/Write 0x00000000
0xOFC Interrupt Priority Register 63 IPR63 Read/Write 0x00000000
0x100 Interrupt Request Register 0 IRRO Read-only N/A
0x104 Interrupt Request Register 1 IRR1 Read-only N/A
0x1FC Interrupt Request Register 63 IRR63 Read-only N/A
0x200 Interrupt Cause Register 3 ICR3 Read-only N/A
0x204 Interrupt Cause Register 2 ICR2 Read-only N/A
0x208 Interrupt Cause Register 1 ICR1 Read-only N/A
0x20C Interrupt Cause Register 0 ICRO Read-only N/A

AIMEL 134

32003M-AVR32-09/09 I ©

13.6.1 Interrupt Priority Registers

Register Name: IPRO...IPR63

Access Type: Read/Write

Offset: 0x000 - OxOFC

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| INTLEVEL[1:0] [- [- [- [- [- [- |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| - | - | AUTOVECTOR[13:8] |
7 6 5 4 3 2 1 0

| AUTOVECTORI[7:0] |

¢ INTLEVEL: Interrupt Level
Indicates the EVBA-relative offset of the interrupt handler of the corresponding group:

00: INTO
01: INT1
10: INT2
11:INT3

e AUTOVECTOR: Autovector Address
Handler offset is used to give the address of the interrupt handler. The least significant bit should be written to zero to give

halfword alignment.

AIMEL 135

32003M-AVR32-09/09 I ©

13.6.2 Interrupt Request Registers

Name: IRRO...IRR63
Access Type: Read-only
Offset: OxOFF - Ox1FC
Reset Value: N/A
31 30 29 28 27 26 25 24

[TRR[32"x+31] | IRR[32'x+30] | IRR[32'x+29] | IRR[32'x+28] | IRR[32'x+27] | IRR[32'x+26] | IRR[32'x+25] | IRRB2'x+24] |

23 22 21 20 19 18 17 16
[TRR[32"x+23] | IRR[B2'x+22] | IRR[32'x+21] | IRR[32'x+20] | IRR[B32'x+19] | IRR[32'x+18] | IRRG32'x+17] | IRR[B2'x+16] |

15 14 13 12 11 10 9 8
[TRR[32"x+15] | IRR[32'x+14] | IRRG2'x+13] | IRR[32'x+12] | IRRB2'x+11] | IRRG2'x+10] | IRA[B2'x+9] | IRRGZ'x+8] |

7 6 5 4 3 2 1 0
[TRR[32"x+7] | IRRB2'x+6] | IRR[32'x+5] | IRA[B2'x+4] | IRR@B2'x+3] | IRR[B2'x+2] | IRRB2'x+1] | IRRB2'x+0] |

¢ IRR: Interrupt Request line
This bit is cleared when no interrupt request is pending on this input request line.

This bit is set when an interrupt request is pending on this input request line.

The are 64 IRRs, one for each group. Each IRR has 32 bits, one for each possible interrupt request, for a total of 2048 possible
input lines. The IRRs are read by the software interrupt handler in order to determine which interrupt request is pending. The
IRRs are sampled continuously, and are read-only.

AIMEL 136

32003M-AVR32-09/09 I ©

13.6.3 Interrupt Cause Registers

Register Name: ICRO...ICR3

Access Type: Read-only

Offset: 0x200 - 0x20C

Reset Value: N/A
31 30 29 28 27 26 25 24

I I - I I I - |
23 22 21 20 19 18 17 16

I I - I I I - |
15 14 13 12 11 10 9 8

I I - I I I - |
7 6 5 4 3 2 1 0

CAUSE

e CAUSE: Interrupt Group Causing Interrupt of Priority n
ICRn identifies the group with the highest priority that has a pending interrupt of level n. This value is only defined when at least

one interrupt of level n is pending.

32003M-AVR32-09/09

ATMEL

137

14. External Interrupt Controller (EIC)

Rev: 1.0.0.1
14.1 Features

Dedicated interrupt requests for each interrupt
Individually maskable interrupts

Interrupt on rising or falling edge

Interrupt on high or low level

Maskable NMI interrupt

14.2 Description

The External Interrupt Controller allows 4 pins to be configured as external interrupts. Each pin
has its own interrupt request, and can be individually masked. Each pin can generate an inter-
rupt on rising or falling edge, or high or low level.

The module also masks the NMI_N pin, which generates the NMI interrupt for the CPU.
14.3 Block Diagram

Figure 14-1. External Interrupt Controller block diagram

LEVEL | IER

M(iDE ¢ IIZlR

EXTINTn Sync —» Edge/Level —| INTn —» Mask [—IRQn»
Detector

ISR IMR

NMIC

NMI_N &—» Sync —»{ Mask [—NMI_IRQ-»

14.4 Product Dependencies

14.4.1 I/0 Lines

The External Interrupt and NMI pins are multiplexed with P1O lines. To act as external interrupts,
these pins must be configured as inputs pins by the PIO controller. It is also possible to trigger
the interrupt by driving these pins from registers in the PIO controller, or another peripheral out-
put connected to the same pin.

Alm L 138

32003M-AVR32-09/09 I ©

14.4.2

14.4.3

Power Management

Interrupt

Edge triggered interrupts are available in all sleep modes except Deepdown. Level triggered
interrupts and the NMI interrupt are available in all sleep modes.

The EIC interrupt lines are connected to internal sources of the interrupt controller. Using the
External Interrutps requires the interrupt controller to be programmed first.

Using the Non-Maskable Interrupt does not require the interrupt controller to be programmed.

14.5 Functional Description

14.5.1

14.5.1.1

14.5.2

External Interrupts

Each external interrupt pin EXTINTN can be configured to produce an interrupt on rising or fall-
ing edge, or high or low level. External interrupts are configured by the MODE, EDGE, and
LEVEL registers. Each interrupt n has a bit INTn in each of these registers.

Similarly, each interrupt has a corresponding bit in each of the interrupt control and status regis-
ters. Writing 1 to the INTn strobe in IER enables the external interrupt on pin EXTINTn, while
writing 1 to INTn in IDR disables the external interrupt. IMR can be read to check which inter-
rupts are enabled. When the interrupt triggers, the corresponding bit in ISR will be set. For edge
triggered interrupts, the flag remains set until the corresponding strobe bit in ICR is written to 1.
For level triggered interrupts, the flag remains set for as long as the interrupt condition is present
on the pin.

Writing INTn in MODE to 0 enables edge triggered interrupts, while writing the bit to 1 enables
level triggered interrupts.

If EXTINTnN is configured as an edge triggered interrupt, writing INTn in EDGE to 0 will trigger the
interrupt on falling edge, while writing the bit to 1 will trigger the interrupt on rising edge.

If EXTINTN is configured as a level triggered interrupt, writing INTn in LEVEL to O will trigger the
interrupt on low level, while writing the bit to 1 will trigger the interrupt on high level.

Synchronization of external interrupts

NMI Control

32003M-AVR32-09/09

The pin value of the EXTINTn pins is normally synchronized to the CPU clock, so spikes shorter
than a CPU clock cycle are not guaranteed to produce an interrupt. In Stop mode, spikes shorter
than a 32KHz clock cycle are not guaranteed to produce an interrupt. In Deepdown mode, only
unsynchronized level interrupts remain active, and any short spike on this interrupt will wake up
the device.

The Non-Maskable Interrupt of the CPU is connected to the NMI_N pin through masking logic in
the External Interrupt Controller. This masking ensures that the NMI will not trigger before the
CPU has been set up to handle interrupts. Writing the EN bit in the NMIC register enables the
NMI interrupt, while writing EN to O disables the NMI interrupt. When enabled, the interrupt trig-
gers whenever the NMI_N pin is negated.

The NMI_N pin is synchronized the same way as external level interrupts.

Alm L 139

Y 5

14.6 User Interface

Offset Register Register Name Access Reset
0x00 EIC Interrupt Enable IER Write-only 0x0
0x04 EIC Interrupt Disable IDR Write-only 0x0
0x08 EIC Interrupt Mask IMR Read-only 0x0
0x0C EIC Interrupt Status ISR Read-only 0x0
0x10 EIC Interrupt Clear ICR Write-only 0x0
0x14 External Interrupt Mode MODE Read/Write 0x0
0x18 External Interrupt Edge EDGE Read/Write 0x0
0x1C External Interrupt Level LEVEL Read/Write 0x0
0x24 External Interrupt NMI Control NMIC Read/Write 0x0

AIMEL 140

32003M-AVR32-09/09 I ©

14.6.1 EIC Interrupt Enable/Disable/Mask/Status/Clear

Name: IER/IDR/IMR/ISR/ICR
Access Type: IER/IDR/ICR: Write-only
IMR/ISR: Read-only

31 30 29 28 27 26 25 24
- r - r - r - r - ;- [- [- |
23 22 21 20 19 18 17 16
- r - r - r - r - ;- [- [- |
15 14 13 12 11 10 9 8
- r - r-r - r - ;- [- [- |
7 6 5 4 3 2 1 0
‘ - ‘ - ‘ - ‘ - ‘ INT3 ‘ INT2 ‘ INT1 ‘ INTO ‘

¢ INTn: External Interrupt n
0: External Interrupt has not triggered
1: External Interrupt has triggered

The effect of writing or reading the bits listed above depends on which register is being accessed:

IER (Write-only)
0: No effect
1: Enable Interrupt
IDR (Write-only)
0: No effect
1: Disable Interrupt
IMR (Read-only)
0: Interrupt is disabled
1: Interrupt is enabled
ISR (Read-only)
0: An interrupt event has occurred
1: An interrupt even has not occurred
ICR (Write-only)
0: No effect
1: Clear interrupt event

AIMEL 141

32003M-AVR32-09/09 I ©

14.6.2 External Interrupt Mode/Edge/Level

Name: MODE/EDGE/LEVEL

Access Type: Read/Write
31 30 29 28 27 26 25 24

| | | | - | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

| | | | |- | | |
7 6 5 4 3 2 1 0

‘] ‘] \] \ . \ INT3 ‘ INT2 \ INTA \ INTO ‘

¢ INTn: External Interrupt n

The bit interpretation is register specific:

* MODE
0: Interrupt is edge triggered
1: Interrupt is level triggered

0: Interrupt triggers on falling edge

1: Interrupt triggers on rising edge
e LEVEL

0: Interrupt triggers on low level

1: Interrupt triggers on high level

A ||'|E|,® 142

32003M-AVR32-09/09

14.6.3 NMI Control

Name: NMIC

Access Type: Read/Write
31 30 29 28 27 26 25 24

| | | | - | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

| | | | R | | |
7 6 5 4 3 2 1 0

I N e e I I D -

¢ EN: Enable

0: NMI disabled. Asserting the NMI pin does not generate an NMI request.
1: NMI enabled. Asserting the NMI pin generate an NMI request.

A ||'|E|,® 143

32003M-AVR32-09/09

15. HSB Bus Matrix (HMATRIX)

Rev: 2.0.0.2
15.1 Features

* User Interface on peripheral bus
¢ Configurable Number of Masters (Up to sixteen)
¢ Configurable Number of Slaves (Up to sixteen)
¢ One Decoder for Each Master
* Three Different Memory Mappings for Each Master (Internal and External boot, Remap)
* One Remap Function for Each Master
* Programmable Arbitration for Each Slave
— Round-Robin
— Fixed Priority
* Programmable Default Master for Each Slave
— No Default Master
— Last Accessed Default Master
— Fixed Default Master
* One Cycle Latency for the First Access of a Burst
¢ Zero Cycle Latency for Default Master
* One Special Function Register for Each Slave (Not dedicated)

15.2 Overview

The Bus Matrix implements a multi-layer bus structure, that enables parallel access paths
between multiple High Speed Bus (HSB) masters and slaves in a system, thus increasing the
overall bandwidth. The Bus Matrix interconnects up to 16 HSB Masters to up to 16 HSB Slaves.
The normal latency to connect a master to a slave is one cycle except for the default master of
the accessed slave which is connected directly (zero cycle latency). The Bus Matrix provides 16
Special Function Registers (SFR) that allow the Bus Matrix to support application specific
features.

15.3 Product Dependencies

In order to use this module, other parts of the system must be configured correctly, as described
below.

15.3.1 Clocks

The clock for the HMATRIX bus interface (CLK_HMATRIX) is generated by the Power Manager.
This clock is enabled at reset, and can be disabled in the Power Manager. It is recommended to
disable the HMATRIX before disabling the clock, to avoid freezing the HMATRIX in an undefined
state.

15.4 Functional Description

15.41 Memory Mapping

The Bus Matrix provides one decoder for every HSB Master Interface. The decoder offers each
HSB Master several memory mappings. In fact, depending on the product, each memory area

Alm L 144

32003M-AVR32-09/09 I ©

15.4.2

15.4.2.1

15.4.2.2

15.4.2.3

15.4.3

may be assigned to several slaves. Booting at the same address while using different HSB
slaves (i.e. external RAM, internal ROM or internal Flash, etc.) becomes possible.

The Bus Matrix user interface provides Master Remap Control Register (MRCR) that performs
remap action for every master independently.

Special Bus Granting Mechanism

The Bus Matrix provides some speculative bus granting techniques in order to anticipate access
requests from some masters. This mechanism reduces latency at first access of a burst or single
transfer. This bus granting mechanism sets a different default master for every slave.

At the end of the current access, if no other request is pending, the slave remains connected to
its associated default master. A slave can be associated with three kinds of default masters: no
default master, last access master and fixed default master.

No Default Master

At the end of the current access, if no other request is pending, the slave is disconnected from
all masters. No Default Master suits low-power mode.

Last Access Master

At the end of the current access, if no other request is pending, the slave remains connected to
the last master that performed an access request.

Fixed Default Master

Arbitration

32003M-AVR32-09/09

At the end of the current access, if no other request is pending, the slave connects to its fixed
default master. Unlike last access master, the fixed master does not change unless the user
modifies it by a software action (field FIXED_DEFMSTR of the related SCFQG).

To change from one kind of default master to another, the Bus Matrix user interface provides the
Slave Configuration Registers, one for each slave, that set a default master for each slave. The
Slave Configuration Register contains two fields: DEFMSTR_TYPE and FIXED_DEFMSTR. The
2-bit DEFMSTR_TYPE field selects the default master type (no default, last access master, fixed
default master), whereas the 4-bit FIXED_DEFMSTR field selects a fixed default master pro-
vided that DEFMSTR_TYPE is set to fixed default master. Please refer to the Bus Matrix user
interface description.

The Bus Matrix provides an arbitration mechanism that reduces latency when conflict cases
occur, i.e. when two or more masters try to access the same slave at the same time. One arbiter
per HSB slave is provided, thus arbitrating each slave differently.

The Bus Matrix provides the user with the possibility of choosing between 2 arbitration types for
each slave:

1. Round-Robin Arbitration (default)
2. Fixed Priority Arbitration
This choice is made via the field ARBT of the Slave Configuration Registers (SCFG).

Each algorithm may be complemented by selecting a default master configuration for each
slave.

Alm L 145

Y 5

When a re-arbitration must be done, specific conditions apply. See Section 15.4.3.1 "Arbitration
Rules” on page 146.

15.4.3.1 Arbitration Rules

Each arbiter has the ability to arbitrate between two or more different master requests. In order
to avoid burst breaking and also to provide the maximum throughput for slave interfaces, arbitra-
tion may only take place during the following cycles:

1. Idle Cycles: When a slave is not connected to any master or is connected to a master
which is not currently accessing it.

2. Single Cycles: When a slave is currently doing a single access.

3. End of Burst Cycles: When the current cycle is the last cycle of a burst transfer. For
defined length burst, predicted end of burst matches the size of the transfer but is man-
aged differently for undefined length burst. See Section “¢” on page 146.

4. Slot Cycle Limit: When the slot cycle counter has reached the limit value indicating that

the current master access is too long and must be broken. See Section “»” on page 146.

* Undefined Length Burst Arbitration

In order to avoid long slave handling during undefined length bursts (INCR), the Bus Matrix pro-
vides specific logic in order to re-arbitrate before the end of the INCR transfer. A predicted end
of burst is used as a defined length burst transfer and can be selected from among the following
five possibilities:

1. Infinite: No predicted end of burst is generated and therefore INCR burst transfer will
never be broken.

2. One beat bursts: Predicted end of burst is generated at each single transfer inside the
INCP transfer.
3. Four beat bursts: Predicted end of burst is generated at the end of each four beat bound-
ary inside INCR transfer.
4. Eight beat bursts: Predicted end of burst is generated at the end of each eight beat
boundary inside INCR transfer.
5. Sixteen beat bursts: Predicted end of burst is generated at the end of each sixteen beat
boundary inside INCR transfer.
This selection can be done through the field ULBT of the Master Configuration Registers
(MCFG).

* Slot Cycle Limit Arbitration

The Bus Matrix contains specific logic to break long accesses, such as very long bursts on a
very slow slave (e.g., an external low speed memory). At the beginning of the burst access, a
counter is loaded with the value previously written in the SLOT_CYCLE field of the related Slave
Configuration Register (SCFG) and decreased at each clock cycle. When the counter reaches
zero, the arbiter has the ability to re-arbitrate at the end of the current byte, half word or word
transfer.

Alm L 146

32003M-AVR32-09/09 I ©

15.4.3.2 Round-Robin Arbitration

This algorithm allows the Bus Matrix arbiters to dispatch the requests from different masters to
the same slave in a round-robin manner. If two or more master requests arise at the same time,
the master with the lowest number is first serviced, then the others are serviced in a round-robin
manner.

There are three round-robin algorithms implemented:

1. Round-Robin arbitration without default master
2. Round-Robin arbitration with last default master
3. Round-Robin arbitration with fixed default master
¢ Round-Robin Arbitration without Default Master

This is the main algorithm used by Bus Matrix arbiters. It allows the Bus Matrix to dispatch
requests from different masters to the same slave in a pure round-robin manner. At the end of
the current access, if no other request is pending, the slave is disconnected from all masters.
This configuration incurs one latency cycle for the first access of a burst. Arbitration without
default master can be used for masters that perform significant bursts.

¢ Round-Robin Arbitration with Last Default Master

This is a biased round-robin algorithm used by Bus Matrix arbiters. It allows the Bus Matrix to
remove the one latency cycle for the last master that accessed the slave. In fact, at the end of
the current transfer, if no other master request is pending, the slave remains connected to the
last master that performed the access. Other non privileged masters still get one latency cycle if
they want to access the same slave. This technique can be used for masters that mainly perform
single accesses.

* Round-Robin Arbitration with Fixed Default Master

This is another biased round-robin algorithm. It allows the Bus Matrix arbiters to remove the one
latency cycle for the fixed default master per slave. At the end of the current access, the slave
remains connected to its fixed default master. Every request attempted by this fixed default mas-
ter will not cause any latency whereas other non privileged masters will still get one latency
cycle. This technique can be used for masters that mainly perform single accesses.

15.4.3.3 Fixed Priority Arbitration

This algorithm allows the Bus Matrix arbiters to dispatch the requests from different masters to
the same slave by using the fixed priority defined by the user. If two or more master requests are
active at the same time, the master with the highest priority number is serviced first. If two or
more master requests with the same priority are active at the same time, the master with the
highest number is serviced first.

For each slave, the priority of each master may be defined through the Priority Registers for
Slaves (PRAS and PRBS).

15.4.4 Slave and Master assignation

The index number assigned to Bus Matrix slaves and masters are described in Memories

chapter.
Alm L 147

32003M-AVR32-09/09 I ©

15.5 User Interface

Table 15-1. HMATRIX Register Memory Map
Offset Register Name Access Reset Value
0x0000 Master Configuration Register 0 MCFGO Read/Write 0x00000002
0x0004 Master Configuration Register 1 MCFG1 Read/Write 0x00000002
0x0008 Master Configuration Register 2 MCFG2 Read/Write 0x00000002
0x000C Master Configuration Register 3 MCFG3 Read/Write 0x00000002
0x0010 Master Configuration Register 4 MCFG4 Read/Write 0x00000002
0x0014 Master Configuration Register 5 MCFG5 Read/Write 0x00000002
0x0018 Master Configuration Register 6 MCFG6 Read/Write 0x00000002
0x001C Master Configuration Register 7 MCFG7 Read/Write 0x00000002
0x0020 Master Configuration Register 8 MCFG8 Read/Write 0x00000002
0x0024 Master Configuration Register 9 MCFG9 Read/Write 0x00000002
0x0028 Master Configuration Register 10 MCFG10 Read/Write 0x00000002
0x002C Master Configuration Register 11 MCFG11 Read/Write 0x00000002
0x0030 Master Configuration Register 12 MCFG12 Read/Write 0x00000002
0x0034 Master Configuration Register 13 MCFG13 Read/Write 0x00000002
0x0038 Master Configuration Register 14 MCFG14 Read/Write 0x00000002
0x003C Master Configuration Register 15 MCFG15 Read/Write 0x00000002
0x0040 Slave Configuration Register 0 SCFGO Read/Write 0x00000010
0x0044 Slave Configuration Register 1 SCFG1 Read/Write 0x00000010
0x0048 Slave Configuration Register 2 SCFG2 Read/Write 0x00000010
0x004C Slave Configuration Register 3 SCFG3 Read/Write 0x00000010
0x0050 Slave Configuration Register 4 SCFG4 Read/Write 0x00000010
0x0054 Slave Configuration Register 5 SCFG5 Read/Write 0x00000010
0x0058 Slave Configuration Register 6 SCFG6 Read/Write 0x00000010
0x005C Slave Configuration Register 7 SCFG7 Read/Write 0x00000010
0x0060 Slave Configuration Register 8 SCFG8 Read/Write 0x00000010
0x0064 Slave Configuration Register 9 SCFG9 Read/Write 0x00000010
0x0068 Slave Configuration Register 10 SCFG10 Read/Write 0x00000010
0x006C Slave Configuration Register 11 SCFG11 Read/Write 0x00000010
0x0070 Slave Configuration Register 12 SCFG12 Read/Write 0x00000010
0x0074 Slave Configuration Register 13 SCFG13 Read/Write 0x00000010
0x0078 Slave Configuration Register 14 SCFG14 Read/Write 0x00000010
0x007C Slave Configuration Register 15 SCFG15 Read/Write 0x00000010
0x0080 Priority Register A for Slave 0 PRASO Read/Write 0x00000000
0x0084 Priority Register B for Slave 0 PRBS0O Read/Write 0x00000000
0x0088 Priority Register A for Slave 1 PRAS1 Read/Write 0x00000000
AIMEL 148
Y 5

32003M-AVR32-09/09

Table 15-1. HMATRIX Register Memory Map (Continued)

Offset Register Name Access Reset Value
0x008C Priority Register B for Slave 1 PRBS1 Read/Write 0x00000000
0x0090 Priority Register A for Slave 2 PRAS2 Read/Write 0x00000000
0x0094 Priority Register B for Slave 2 PRBS2 Read/Write 0x00000000
0x0098 Priority Register A for Slave 3 PRASS3 Read/Write 0x00000000
0x009C Priority Register B for Slave 3 PRBS3 Read/Write 0x00000000
0x00A0 Priority Register A for Slave 4 PRAS4 Read/Write 0x00000000
0x00A4 Priority Register B for Slave 4 PRBS4 Read/Write 0x00000000
0x00A8 Priority Register A for Slave 5 PRAS5 Read/Write 0x00000000
0x00AC Priority Register B for Slave 5 PRBS5 Read/Write 0x00000000
0x00B0O Priority Register A for Slave 6 PRAS6 Read/Write 0x00000000
0x00B4 Priority Register B for Slave 6 PRBS6 Read/Write 0x00000000
0x00B8 Priority Register A for Slave 7 PRAS7 Read/Write 0x00000000
0x00BC Priority Register B for Slave 7 PRBS7 Read/Write 0x00000000
0x00CO0 Priority Register A for Slave 8 PRASS8 Read/Write 0x00000000
0x00C4 Priority Register B for Slave 8 PRBS8 Read/Write 0x00000000
0x00C8 Priority Register A for Slave 9 PRAS9 Read/Write 0x00000000
0x00CC Priority Register B for Slave 9 PRBS9 Read/Write 0x00000000
0x00D0 Priority Register A for Slave 10 PRAS10 Read/Write 0x00000000
0x00D4 Priority Register B for Slave 10 PRBS10 Read/Write 0x00000000
0x00D8 Priority Register A for Slave 11 PRAS11 Read/Write 0x00000000
0x00DC Priority Register B for Slave 11 PRBS11 Read/Write 0x00000000
0x00EO Priority Register A for Slave 12 PRAS12 Read/Write 0x00000000
0xO0E4 Priority Register B for Slave 12 PRBS12 Read/Write 0x00000000
0x00E8 Priority Register A for Slave 13 PRAS13 Read/Write 0x00000000
0x00EC Priority Register B for Slave 13 PRBS13 Read/Write 0x00000000
0x00FO0 Priority Register A for Slave 14 PRAS14 Read/Write 0x00000000
0x00F4 Priority Register B for Slave 14 PRBS14 Read/Write 0x00000000
0x00F8 Priority Register A for Slave 15 PRAS15 Read/Write 0x00000000
0x00FC Priority Register B for Slave 15 PRBS15 Read/Write 0x00000000
0x0100 Master Remap Control Register MRCR Read/Write 0x00000000
0x0110 Special Function Register 0 SFRO Read/Write -

0x0114 Special Function Register 1 SFR1 Read/Write -

0x0118 Special Function Register 2 SFR2 Read/Write -

0x011C Special Function Register 3 SFR3 Read/Write -

0x0120 Special Function Register 4 SFR4 Read/Write -

0x0124 Special Function Register 5 SFR5 Read/Write -

AIMEL 149
Y 5

32003M-AVR32-09/09

Table 15-1. HMATRIX Register Memory Map (Continued)

32003M-AVR32-09/09

Y 5

Offset Register Name Access Reset Value
0x0128 Special Function Register 6 SFR6 Read/Write -
0x012C Special Function Register 7 SFR7 Read/Write -
0x0130 Special Function Register 8 SFR8 Read/Write -
0x0134 Special Function Register 9 SFR9 Read/Write -
0x0138 Special Function Register 10 SFR10 Read/Write -
0x013C Special Function Register 11 SFR11 Read/Write -
0x0140 Special Function Register 12 SFR12 Read/Write -
0x0144 Special Function Register 13 SFR13 Read/Write -
0x0148 Special Function Register 14 SFR14 Read/Write -
0x014C Special Function Register 15 SFR15 Read/Write -
ATMEL 150

15.5.1 Master Configuration Registers

Name: MCFGO...MCFG15

Access Type: Read/Write

Offset: 0x00 - 0x3C

Reset Value: 0x00000002
31 30 29 28 27 26 25 24

I - I . I - I - I . I - I - I - |
23 22 21 20 19 18 17 16

I - I . I - I - I . I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | . | - | - | . | ULBT |

¢ ULBT: Undefined Length Burst Type
0: Infinite Length Burst
No predicted end of burst is generated and therefore INCR bursts coming from this master cannot be broken.
1: Single Access
The undefined length burst is treated as a succession of single accesses, allowing re-arbitration at each beat of the INCR burst.
2: Four Beat Burst
The undefined length burst is split into a four-beat burst, allowing re-arbitration at each four-beat burst end.
3: Eight Beat Burst
The undefined length burst is split into an eight-beat burst, allowing re-arbitration at each eight-beat burst end.
4: Sixteen Beat Burst
The undefined length burst is split into a sixteen-beat burst, allowing re-arbitration at each sixteen-beat burst end.

AIMEL 151

32003M-AVR32-09/09 I ©

15.5.2 Slave Configuration Registers

Name: SCFGO0...SCFG15

Access Type: Read/Write

Offset: 0x40 - 0x7C

Reset Value: 0x00000010
31 30 29 28 27 26 25 24

- 1 - T - - - — - ARET]
23 22 21 20 19 18 17 16

| - [- [FIXED_DEFMSTR [DEFMSTR_TYPE |
15 14 13 12 11 10 9 8

- T - 1T - - - — 1 - —
7 6 5 4 3 2 1 0

| SLOT_CYCLE |

¢ ARBT: Arbitration Type
0: Round-Robin Arbitration
1: Fixed Priority Arbitration
¢ FIXED_DEFMSTR: Fixed Default Master
This is the number of the Default Master for this slave. Only used if DEFMSTR_TYPE is 2. Specifying the number of a master
which is not connected to the selected slave is equivalent to setting DEFMSTR_TYPE to 0.
The size of this field depends on the number of masters. This size is log2(number of masters).
e DEFMSTR_TYPE: Default Master Type
0: No Default Master
At the end of the current slave access, if no other master request is pending, the slave is disconnected from all masters.
This results in a one cycle latency for the first access of a burst transfer or for a single access.
1: Last Default Master
At the end of the current slave access, if no other master request is pending, the slave stays connected to the last master having
accessed it.
This results in not having one cycle latency when the last master tries to access the slave again.
2: Fixed Default Master
At the end of the current slave access, if no other master request is pending, the slave connects to the fixed master the number
that has been written in the FIXED_DEFMSTR field.
This results in not having one cycle latency when the fixed master tries to access the slave again.
¢ SLOT_CYCLE: Maximum Number of Allowed Cycles for a Burst
When the SLOT_CYCLE limit is reached for a burst, it may be broken by another master trying to access this slave.
This limit has been placed to avoid locking a very slow slave when very long bursts are used.
This limit must not be very small. Unreasonably small values break every burst and the Bus Matrix arbitrates without performing
any data transfer. 16 cycles is a reasonable value for SLOT_CYCLE.

AIMEL 152

32003M-AVR32-09/09 I ©

15.5.3 Bus Matrix Priority Registers A For Slaves

Name: PRASO0...PRAS15

Access Type: Read/Write

Offset: -

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| M7PR [M6PR |
23 22 21 20 19 18 17 16

| M5PR [M4PR |
15 14 13 12 11 10 9 8

| M3PR [M2PR |
7 6 5 4 3 2 1 0

| M1PR [MOPR |

* MxPR: Master x Priority
Fixed priority of Master x for accessing the selected slave. The higher the number, the higher the priority.

AIMEL 153

32003M-AVR32-09/09 I ©

15.5.4 Priority Registers B For Slaves

Name: PRBSO0...PRBS15

Access Type: Read/Write

Offset: -

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| M15PR [M14PR |
23 22 21 20 19 18 17 16

| M13PR [M12PR |
15 14 13 12 11 10 9 8

| M11PR | M10PR |
7 6 5 4 3 2 1 0

| MOPR [M8PR |

* MxPR: Master x Priority
Fixed priority of Master x for accessing the selected slave. The higher the number, the higher the priority.

AIMEL 154

32003M-AVR32-09/09 I ©

15.5.5 Master Remap Control Register

Name: MRCR

Access Type: Read/Write

Offset: 0x100

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

I - I . I - I - I . I - I - - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - - |
15 14 13 12 11 10 9 8

| RCB15 | RCB14 | RCB13 | RCB12 | RCB11 [RCB10 | RCB9 RCBS |
7 6 5 4 3 2 1 0

| RCB7 [RCB6 [RCB5 [RCB4 [RCB3 [RCB2 [RCB1 RCBO |

¢ RCB: Remap Command Bit for Master x

0: Disable remapped address decoding for the selected Master
1: Enable remapped address decoding for the selected Master

32003M-AVR32-09/09

ATMEL

Y 5

155

15.5.6 Special Function Registers

Name: SFRO0...SFR15

Access Type: Read/Write

Offset: 0x110 - Ox115

Reset Value: -
31 30 29 28 27 26 25 24

| SFR |
23 22 21 20 19 18 17 16

| SFR |
15 14 13 12 11 10 9 8

| SFR |
7 6 5 4 3 2 1 0

SFR |

¢ SFR: Special Function Register Fields

Those registers are not a HMATRIX specific register. The field of those will be defined where they are used.

32003M-AVR32-09/09

ATMEL

Y 5

156

16. External Bus Interface (EBI)

16.1 Features

16.2 Description

32003M-AVR32-09/09

Rev: 1.0.1.2

* Optimized for Application Memory Space support
¢ Integrates Three External Memory Controllers:
— Static Memory Controller
— SDRAM Controller
— ECC Controller
Additional Logic for NAND Flash/SmartMedia™ and CompactFlash™ Support
— NAND Flash support: 8-bit as well as 16-bit devices are supported
— CompactFlash support: all modes (Attribute Memory, Common Memory, I/O, True IDE) are
supported but the signals _I0IS16 (I/O and True IDE modes) and _ATA SEL (True IDE mode)
are not handled.
¢ Optimized External Bus:
— 16- or 32-bit Data Bus
— Up to 26-bit Address Bus, Up to 64-Mbytes Addressable
— Optimized pin multiplexing to reduce latencies on External Memories
Up to 6 Chip Selects, Configurable Assignment:
— Static Memory Controller on NCS0O
— SDRAM Controller or Static Memory Controller on NCS1
— Static Memory Controller on NCS2
— Static Memory Controller on NCS3, Optional NAND Flash Support
— Static Memory Controller on NCS4 - NCS5, Optional CompactFlash™ Support

The External Bus Interface (EBI) is designed to ensure the successful data transfer between
several external devices and the embedded Memory Controller of an AVR32 device. The Static
Memory, SDRAM and ECC Controllers are all featured external Memory Controllers on the EBI.
These external Memory Controllers are capable of handling several types of external memory
and peripheral devices, such as SRAM, PROM, EPROM, EEPROM, Flash, and SDRAM.

The EBI also supports the CompactFlash and the NAND Flash/SmartMedia protocols via inte-
grated circuitry that greatly reduces the requirements for external components. Furthermore, the
EBI handles data transfers with up to six external devices, each assigned to six address spaces
defined by the embedded Memory Controller. Data transfers are performed through a 16-bit or
32-bit data bus, an address bus of up to 26 bits, up to six chip select lines (NCS[5:0]) and sev-
eral control pins that are generally multiplexed between the different external Memory
Controllers.

AIMEL 157

Y 5

16.3 Block Diagram
16.3.1 External Bus Interface

Figure 16-1 shows the organization of the External Bus Interface.

Figure 16-1. Organization of the External Bus Interface

Bus Matrix External Bus Interface 0
< > »[] DI15:0]
HSB N SDRAM ¢ N >D AO/NBSO
Controller
=D A1/NWR2/NBS2
»[] Al15:2], A[22:18]
»[] A16/BAO

MUX

Static Logic »[1 A17/BA1

Memory
< p| Controller | g——pp| »[] NCSo
»[] NCS1/sDCs

»[] NCS3/NANDCS
»[] NRD/NOE/CFOE
»[] NWRO/NWE/CFWI
A »[] NWR1/NBS1/CFIC
= 4 »[] NWRB3/NBS3/CFIC
| CompactFlash R
Logic *[] sbck
»[] SDCKE
v »[] RAS
—P| NAND Flash [€=P »[] cAs
SmartMedia (] Sbwe
Logic »[] SDA10
i »[] NANDOE

»[] NANDWE
—> ECC

Controller] D31:16]

——] A[25:23]
Chip Select L] CFRNW
Assignor «——[] NCS4/CFCSO0
PIOl«——]] NCS5/CFCST1
«——[] NCS2
[] NWAIT

User Interface «—[] CFCE1

?
N

Peripheral Bus
Alm L 158

32003M-AVR32-09/09 I ©

Address Decoders

«——]] CFCE2

A “"E"® 159

32003M-AVR32-09/09

16.4 1/0 Lines Description

Table 16-1. EBI I/O Lines Description

32003M-AVR32-09/09

Y 5

Name Function Type Active Level
EBI
DO - D31 Data Bus I/O
A0 - A25 Address Bus Output
NWAIT External Wait Signal Input Low
smMC
NCSO - NCS5 Chip Select Lines Output Low
NWRO - NWR3 Write Signals Output Low
NOE Output Enable Output Low
NRD Read Signal Output Low
NWE Write Enable Output Low
NBSO - NBS3 Byte Mask Signals Output Low
EBI for CompactFlash Support
CFCE1 - CFCE2 CompactFlash Chip Enable Output Low
CFOE CompactFlash Output Enable Output Low
CFWE CompactFlash Write Enable Output Low
CFIOR CompactFlash I/O Read Signal Output Low
CFIOW CompactFlash 1/0O Write Signal Output Low
CFRNW CompactFlash Read Not Write Signal Output
CFCSO0 - CFCS1 CompactFlash Chip Select Lines Output Low
EBI for NAND Flash/SmartMedia Support
NANDCS NAND Flash Chip Select Line Output Low
NANDOE NAND Flash Output Enable Output Low
NANDWE NAND Flash Write Enable Output Low
SDRAM Controller
SDCK SDRAM Clock Output
SDCKE SDRAM Clock Enable Output High
SDCS SDRAM Controller Chip Select Line Output Low
BAO - BA1 Bank Select Output
SDWE SDRAM Write Enable Output Low
RAS - CAS Row and Column Signal Output Low
NWRO - NWR3 Write Signals Output Low
NBSO - NBS3 Byte Mask Signals Output Low
SDA10 SDRAM Address 10 Line Output
AIMEL 160

Depending on the Memory Controller in use, all signals are not connected directly through the

Mux Logic.

Table 16-2 on page 161 details the connections between the two Memory Controllers and the

EBI pins.

Table 16-2. EBI Pins and Memory Controllers I/O Lines Connections

EBI Pins SDRAMC I/O Lines SMC I/O Lines
NWR1/NBS1/CFIOR NBS1 NWR1/NUB
AO/NBSO Not Supported SMC_AO/NLB
A1/NBS2/NWR2 Not Supported SMC_A1
A[11:2] SDRAMC_A[9:0] SMC_A[11:2]
SDA10 SDRAMC_A10 Not Supported
A12 Not Supported SMC_A12
A[14:13] SDRAMC_A[12:11] SMC_A[14:13]
A[22:15] Not Supported SMC_A[22:15]
A[25:23] Not Supported SMC_A[25:23]
D[31:0] D[31:0] D[31:0]

32003M-AVR32-09/09

ATMEL

Y 5

161

16.5 Application Example
16.5.1 Hardware Interface
Table 16-3 on page 162 details the connections to be applied between the EBI pins and the

external devices for each Memory Controller.

Table 16-3. EBI Pins and External Static Devices Connections

Pins of the Interfaced Device

8-bit Static 2S"t:t'i2” 16-bit Static 4 Sxt :t}?t 2 étﬁf” 32-bit Static
Signals Device Devices Device Devices Devices Device
Controller SMC
DO - D7 DO - D7 DO - D7 DO - D7 DO - D7 DO - D7 DO - D7
D8 - D15 - D8 - D15 D8 -D15 D8 - D15 D8 - 15 D8- 15
D16 - D23 - - - D16 - D23 D16 - D23 D16 - D23
D24 - D31 - - - D24 - D31 D24 - D31 D24 - D31
AO/NBS0 A0 - NLB - NLB® BEQ®
A1/NWR2/NBS2 A1 A0 A0 WE® NLB® BE20®
A2 - A22 A[2:22] Al1:21] A[1:21] A[0:20] A[0:20] A[0:20]
A23 - A25 A[23:25] A[22:24] A[22:24] A[21:23] A[21:23] A[21:23]
NCS0 (o] (o] cs cs cs cs
NCS1/SDCS cs cs cs Cs cs cs
NCS2 cs cs cs cs cs cs
NCS3/NANDCS cs cs cs cs cs cs
NCS4/CFCSO0 cs cs cs Cs cs cs
NCS5/CFCS1 cs (o]} cs cs cs cs
NRD/NOE/CFOE OE OE OE OE OE OE
NWRO/NWE WE WEM WE WE® WE WE
NWR1/NBS1 - WEM NUB WE® NUB® BE1®
NWR3/NBS3 - - - WE® NUB® BE3®

Notes: NWR1 enables upper byte writes. NWRO enables lower byte writes.

NWRXx enables corresponding byte x writes. (x = 0,1,2 or 3)

NBSO0 and NBS1 enable respectively lower and upper bytes of the lower 16-bit word.
NBS2 and NBS3 enable respectively lower and upper bytes of the upper 16-bit word.

BEx: Byte x Enable (x = 0,1,2 or 3)

S A

AIMEL 162

32003M-AVR32-09/09 I ©

Table 16-4. EBI Pins and External Devices Connections

32003M-AVR32-09/09

Pins of the Interfaced Device
Compact Compact Smart Media

SDRAM Flash Flash or
Signals True IDE Mode NAND Flash
Controller SDRAMC SMC
DO - D7 DO - D7 DO - D7 DO - D7 ADO-AD7
D8 - D15 D8 - D15 D8 - 15 D8 - 15 AD8-AD15
D16 - D31 D16 - D31 - - -
AO0/NBSO DQMO A0 A0 -
A1/NWR2/NBS2 DQM2 Al Al -
A2 - A10 A[0:8] A[2:10] A[2:10] -
A11 A9 - - -
SDA10 A10 - - -
A12 - - - -
A13-A14 A[11:12] - - -
A15 - - - -
A16/BAO BAO - - -
A17/BA1 BA1 - - -
A18 - A20 - - - -
A21 - - - CLE®
A22 - REG REG ALE®
A23 - A24 - - - -
A25 - - - -
NCS0 - - - -
NCS1/SDCS CSI[0] - - -
NCS2 - - - -
NCS3/NANDCS - - - -
NCS4/CFCSO0 - CFCso™ CFCcso® -
NCS5/CFCSH - CFCs1™M CFCs1™M -
NANDOE - - - OE
NANDWE - - - WE
NRD/NOE/CFOE - OE - -
NWRO/NWE/CFWE - WE WE -
NWR1/NBS1/CFIOR DQM1 IOR IOR -
NWR3/NBS3/CFIOW DQM3 Iow oW -
CFRNW - CFRNW® CFRNW(® -
CFCE1 - CE1 CSo -
CFCE2 - CE2 CS1 -

AIMEL

Table 16-4. EBI Pins and External Devices Connections (Continued)

Pins of the Interfaced Device
Compact Compact Smart Media
SDRAM Flash Flash or
Signals True IDE Mode NAND Flash
Controller SDRAMC SMC
SDCK CLK - - -
SDCKE CKE - - -
RAS RAS - - -
CAS CAS - - -
SDWE WE - - -
NWAIT - WAIT WAIT -
Pxx@ - CD1 or CD2 CD1 or CD2 -
Pxx®@ - - - CE
Pxx® - - - RDY

32003M-AVR32-09/09

Note:

n

Not directly connected to the CompactFlash slot. Permits the control of the bidirectional buffer
between the EBI data bus and the CompactFlash slot.

Any PIO line.

The CLE and ALE signals of the NAND Flash device may be driven by any address bit. For
details, see "SmartMedia and NAND Flash Support” on page 171.

AIMEL 164

Y 5

AT32AP7000

16.5.2 Connection Examples

Figure 16-2 shows an example of connections between the EBI and external devices.

Figure 16-2. EBI Connections to Memory Devices

EBI
D0-D31
N\
RA!
A —\. 2M x 8 2M x 8
SDCK \ SDRAM SDRAM
SDCKE[N D0-D7 D8-D15
D0-D7 DO-D7
SDWE! N
AO/NBSO N\ cs cs
NWR1/NBS1 A CLK CLK
AUNWRZNBS2 [P A0-A9, A11|_A2-A11,A13 okE A0-A9, A11|_A2-A11,A13
NWR3/NBS3 N WE At0["SDATO SOWE| e A10
NRONOEL -\ s BAO [CAT6/BA0 RAS BAO [_A16/BA0
NwrRONWE[N CAS BA1 [_AT7/BA1 Cas BA1
——{paw e L
N\
SDA10 —\ K
A2-A15 N
A16/BA0[_\
A17/BA1 N /
A1g-A25 N N
N 2M x 8 2M x 8
D16-023 |0 o7 SDRAM D24-D31 SDRAM
g DO-D7
NCS0
NCS1/SDC: cs cs
NCS2 CLK CLK
NGS3 CKE AO-A9, AT1|-AZALLAIS <5we] CE A0-A9, AT1
NOS4 WE A0 WE A10 A2-A11,A13
NCSS5 F RAS BAO[AIOBAY RAS BAO SDA10
F CcAS BA1 CcAS BAT A16/BAO
F pam DQM A17/BA1
NBS3
NBS2
d /
\ V4
((/
128K x 8 128K x 8
SRAM SRAM
A1-A17 A1-A17
D007 DO-D7 AO-A16 08-D18 D0-D7 A0-A16
cs cs
NEDNOE | o6 o
AOINWRO/NBSO) NWR1/NBST
\

AIMEL 165

32003M-AVR32-09/09 I ©

16.6 Product Dependencies

16.6.1 I/0 Lines

The pins used for interfacing the External Bus Interface may be multiplexed with the PIO lines.
The programmer must first program the PIO controller to assign the External Bus Interface pins
to their peripheral function. If I/O lines of the External Bus Interface are not used by the applica-
tion, they can be used for other purposes by the PIO Controller.

16.7 Functional Description

The EBI transfers data between the internal HSB Bus (handled by the HMatrix) and the external
memories or peripheral devices. It controls the waveforms and the parameters of the external
address, data and control busses and is composed of the following elements:

¢ The Static Memory Controller (SMC)

* The SDRAM Controller (SDRAMC)

¢ The ECC Controller (ECC)

* A chip select assignment feature that assigns an HSB address space to the external devices

¢ A multiplex controller circuit that shares the pins between the different Memory Controllers

¢ Programmable CompactFlash support logic

* Programmable SmartMedia and NAND Flash support logic

16.7.1 Bus Multiplexing

The EBI offers a complete set of control signals that share the 32-bit data lines, the address
lines of up to 26 bits and the control signals through a multiplex logic operating in function of the
memory area requests.

Multiplexing is specifically organized in order to guarantee the maintenance of the address and
output control lines at a stable state while no external access is being performed. Multiplexing is
also designed to respect the data float times defined in the Memory Controllers. Furthermore,
refresh cycles of the SDRAM are executed independently by the SDRAM Controller without
delaying the other external Memory Controller accesses.

16.7.2 Pull-up Control

A specific HMATRIX_SFR register in the Matrix User Interface permit enabling of on-chip pull-up
resistors on the data bus lines not multiplexed with the PIO Controller lines. For details on this
register, refer to the Peripherals Section. The pull-up resistors are enabled after reset. Setting
the EBI_DBPUC bit disables the pull-up resistors on lines not muxed with PIO. Enabling the pull-
up resistor on lines multiplexed with PO lines can be performed by programming the appropri-
ate PIO controller.

16.7.3 Static Memory Controller

For information on the Static Memory Controller, refer to the Static Memory Controller Section.

16.7.4 SDRAM Controller

For information on the SDRAM Controller, refer to the SDRAM Section.

16.7.5 ECC Controller

32003M-AVR32-09/09

For information on the ECC Controller, refer to the ECC Section.

Alm L 166

Y 5

16.7.6 CompactFlash Support

The External Bus Interface integrates circuitry that interfaces to CompactFlash devices.

The CompactFlash logic is driven by the Static Memory Controller (SMC) on the NCS4 and/or
NCS5 address space. Programming the EBI_CS4A and/or EBI_CS5A bits in a HMATRIX_SFR
Register to the appropriate value enables this logic. For details on this register, refer to the
Peripherals Section. Access to an external CompactFlash device is then made by accessing the
address space reserved to NCS4 and/or NCS5 (i.e., between 0x04000 0000 and Ox07FF FFFF
for NCS4 and between 0x2000 0000 and 0x23FF FFFF for NCS5).

All CompactFlash modes (Attribute Memory, Common Memory, I/O and True IDE) are sup-
ported but the signals _10IS16 (I/O and True IDE modes) and _ATA SEL (True IDE mode) are
not handled.

16.7.6.1 I/O Mode, Common Memory Mode, Attribute Memory Mode and True IDE Mode

32003M-AVR32-09/09

Within the NCS4 and/or NCS5 address space, the current transfer address is used to distinguish
I/O mode, common memory mode, attribute memory mode and True IDE mode.

The different modes are accessed through a specific memory mapping as illustrated on Figure
16-3. A[23:21] bits of the transfer address are used to select the desired mode as described in
Table 16-5 on page 168.

Figure 16-3. CompactFlash Memory Mapping

A
True IDE Alternate Mode Space
Offset 0XOOEO 0000
True IDE Mode Space
Offset 0x00CO 0000
CF Address Space I/O Mode Space

Offset 0x0080 0000

Common Memory Mode Space
Offset 0x0040 0000

Attribute Memory Mode Space

v Offset 0x0000 0000

Note: The A22 pin is used to drive the REG signal of the CompactFlash Device (except in True IDE
mode).

Alm L 167

Y 5

Table 16-5. CompactFlash Mode Selection

A[23:21] Mode Base Address
000 Attribute Memory
010 Common Memory
100 I/0 Mode

110 True IDE Mode

111 Alternate True IDE Mode

16.7.6.2 CFCE1 and CFCEZ signals

To cover all types of access, the SMC must be alternatively set to drive 8-bit data bus or 16-bit
data bus. The odd byte access on the D[7:0] bus is only possible when the SMC is configured to
drive 8-bit memory devices on the corresponding NCS pin (NCS4 or NCS5). The Chip Select
Register (DBW field in the corresponding Chip Select Register) of the NCS4 and/or NCS5
address space must be set as shown in Table 16-6 to enable the required access type.

NBS1 and NBSO are the byte selection signals from SMC and are available when the SMC is set
in Byte Select mode on the corresponding Chip Select.

The CFCE1 and CFCE2 waveforms are identical to the corresponding NCSx waveform. For
details on these waveforms and timings, refer to the Static Memory Controller Section.

Table 16-6. CFCE1 and CFCE2 Truth Table

Mode CFCE2 CFCE1 DBW Comment SMC Access Mode
Attribute Memory NBS1 NBSO 16 bits Access to Even Byte on D[7:0] Byte Select
A to E Byt D[7:
NBS1 NBSO 1ebits | LocesstoEvenByteonDI701 1o o
Common Memory Access to Odd Byte on D[15:8]
1 0 8 bits Access to Odd Byte on D[7:0]
A to E Byt D[7:0
NBS1 NBSO 16bits | LocesstoEvenByteon DI701 - p oy
1/0O Mode Access to Odd Byte on D[15:8]
1 0 8 bits Access to Odd Byte on D[7:0]
True IDE Mode
. . Access to Even Byte on D[7:0]
Task File 1 0 8 bits
! ! Access to Odd Byte on D[7:0]
. , Access to Even Byte on D[7:0]
Data Register 1 0 16 bits Byte Select
g ! Access to Odd Byte on D[15:8] 4
Alternate True IDE Mode
Control Register Don’t . ,
Alternate Status Read 0 1 Care Access to Even Byte on D[7:0] Don’t Care
Drive Address 0 1 8 bits Access to Odd Byte on D[7:0]
Standby Mode or
Address Space is not 1 1 - - -
assigned to CF

AIMEL 168

32003M-AVR32-09/09 I ©

16.7.6.3

16.7.6.4

32003M-AVR32-09/09

Read/Write Signals

In /0 mode and True IDE mode, the CompactFlash logic drives the read and write command
signals of the SMC on CFIOR and CFIOW signals, while the CFOE and CFWE signals are deac-
tivated. Likewise, in common memory mode and attribute memory mode, the SMC signals are
driven on the CFOE and CFWE signals, while the CFIOR and CFIOW are deactivated. Figure
16-4 on page 169 demonstrates a schematic representation of this logic.

Attribute memory mode, common memory mode and I/O mode are supported by setting the
address setup and hold time on the NCS4 (and/or NCS5) chip select to the appropriate values.
For details on these signal waveforms, please refer to the section: Setup and Hold Cycles of the
Static Memory Controller Section.

Figure 16-4. CompactFlash Read/Write Control Signals

External Bus Interface
SMC CompactFlash Logic
A23
)
11— > 0
00—, » » CFOE
1 4>/r > » CFWE
A22 >
NRD_NOE »
NWRO_NWE » 0 » CFIOR
11— » CFIOW
1
1 —>)

Table 16-7. CompactFlash Mode Selection

Mode Base Address CFOE CFWE CFIOR CFIOW

Attribute Memory

NRD_NOE NWRO_NWE 1 1
Common Memory
I/O Mode 1 1 NRD_NOE NWRO_NWE
True IDE Mode 0 1 NRD_NOE NWRO_NWE

Multiplexing of CompactFlash Signals on EBI Pins

Table 16-8 on page 170 and Table 16-9 on page 170 illustrate the multiplexing of the Compact-
Flash logic signals with other EBI signals on the EBI pins. The EBI pins in Table 16-8 are strictly
dedicated to the CompactFlash interface as soon as the EBI_CS4A and/or EBI_CS5A field of a
specific HMATRIX_SFR Register is set, see the Peripherals Section for details. These pins must
not be used to drive any other memory devices.

The EBI pins in Table 16-9 on page 170 remain shared between all memory areas when the cor-
responding CompactFlash interface is enabled (EBI_CS4A = 1 and/or EBI_CS5A = 1).

Alm L 169

Y 5

Table 16-8. Dedicated CompactFlash Interface Multiplexing

Pins CompactFlash Signals EBI Signals
CS4A =1 CS5A =1 CS4A=0 CS5A =0
NCS4/CFCS0 CFCS0 NCS4
NCS5/CFCS1 CFCS1 NCS5
Table 16-9. Shared CompactFlash Interface Multiplexing
Access to Access to
CompactFlash Device Other EBI Devices
Pins CompactFlash Signals EBI Signals
NOE/NRD/CFOE CFOE NRD/NOE
NWRO/NWE/CFWE CFWE NWRO/NWE
NWR1/NBS1/CFIOR CFIOR NWR1/NBS1
NWR3/NBS3/CFIOW CFIOW NWR3/NBS3
A25/CFRNW CFRNW A25

16.7.6.5 Application Example

Figure 16-5 on page 171 illustrates an example of a CompactFlash application. CFCS0 and
CFRNW signals are not directly connected to the CompactFlash slot 0, but do control the direc-
tion and the output enable of the buffers between the EBI and the CompactFlash Device. The
timing of the CFCSO signal is identical to the NCS4 signal. Moreover, the CFRNW signal
remains valid throughout the transfer, as does the address bus. The CompactFlash _WAIT sig-
nal is connected to the NWAIT input of the Static Memory Controller. For details on these
waveforms and timings, refer to the Static Memory Controller Section.

32003M-AVR32-09/09

ATMEL

Y 5

170

AT32AP7000

Figure 16-5. CompactFlash Application Example

EBI CompactFlash Connector
D[15:0] |'[: || D[15:0]
DIR /OE
A25/CFRNW !
NCS4/CFCS0 ﬁ
CD (PIO) ((-1
l N\ _CD2
JOE
A[10:0] 'l> A[10:0]
A22/REG > _REG
NOE/CFOE ll> _OE
NWE/CFWE > _WE
NWR1/CFIOR > _IORD
NWRS/CFIOW > _IOWR
CFCET1 ll> _CE1
CFCE2 > _CE2
NWAIT <} _WAIT

16.7.7 SmartMedia and NAND Flash Support

The External Bus Interface integrates circuitry that interfaces to SmartMedia and NAND Flash
devices.

The NAND Flash logic is driven by the Static Memory Controller on the NCS3 address space.
Programming the EBI_CSS3A field in a specific HMATRIX_SFR Register to the appropriate value
enables the NAND Flash logic. For details on this register, refer to the Peripherals Section.
Access to an external NAND Flash device is then made by accessing the address space
reserved to NCS3 (i.e., between 0x0C00 0000 and OxOFFF FFFF).

The NAND Flash Logic drives the read and write command signals of the SMC on the NANDOE
and NANDWE signals when the NCS3 signal is active. NANDOE and NANDWE are invalidated
as soon as the transfer address fails to lie in the NCS3 address space. See Figure "NAND Flash
Signal Multiplexing on EBI Pins” on page 172 for more informations. For details on these wave-
forms, refer to the Static Memory Controller Section.

The SmartMedia device is connected the same way as the NAND Flash device.

Alm L 171

32003M-AVR32-09/09 I ©

Figure 16-6. NAND Flash Signal Multiplexing on EBI Pins

SMC SmartMedia Logic
NANDOE
NCSx >) > NANDOE
NRD_NOE >)
ﬁ_ﬁ NANDWE NANDWE
NWRO_NWE >]

16.7.7.1 NAND Flash Signals

The address latch enable and command latch enable signals on the NAND Flash device are
driven by address bits A22 and A21 of the EBI address bus. The user should note that any bit on
the EBI address bus can also be used for this purpose. The command, address or data words
on the data bus of the NAND Flash device are distinguished by using their address within the
NCSx address space. The chip enable (CE) signal of the device and the ready/busy (R/B) sig-
nals are connected to PIO lines. The CE signal then remains asserted even when NCSx is not
selected, preventing the device from returning to standby mode.

Alm L 172

32003M-AVR32-09/09 I ©

32003M-AVR32-09/09

Figure 16-7. NAND Flash Application Example

EBI

P1O

P1O

D[7:0]

< >
A[22:21]
>
NCSx/NANDCS Not Connected
NANDOE >
NANDWE

A4

ADI[7:0]
ALE
CLE

SmartMedia

NOE

NWE

CE

R/B

Note: The External Bus Interfaces is also able to support 16-bits devices.

ATMEL

Y 5

173

17. DMA Controller (DMACA)

Rev: 2.0.0.6
17.1 Features

2 HSB Master Interfaces
¢ 3 Channels
¢ Software and Hardware Handshaking Interfaces
— 11 Hardware Handshaking Interfaces
* Memory/Non-Memory Peripherals to Memory/Non-Memory Peripherals Transfer
¢ Single-block DMA Transfer
¢ Multi-block DMA Transfer
— Linked Lists
— Auto-Reloading
— Contiguous Blocks
* DMA Controller is Always the Flow Controller
¢ Additional Features
— Scatter and Gather Operations
— Channel Locking
— Bus Locking
— FIFO Mode
— Pseudo Fly-by Operation

17.2 Overview

The DMA Controller (DMACA) is an HSB-central DMA controller core that transfers data from a
source peripheral to a destination peripheral over one or more System Bus. One channel is
required for each source/destination pair. In the most basic configuration, the DMACA has one
master interface and one channel. The master interface reads the data from a source and writes
it to a destination. Two System Bus transfers are required for each DMA data transfer. This is
also known as a dual-access transfer.

The DMACA is programmed via the HSB slave interface.

AIMEL 174

32003M-AVR32-09/09 I ©

17.3 Block Diagram

Figure 17-1. DMA Controller (DMACA) Block Diagram

HSB Slave

-l

DMA Controller

HSB Slave

-

HSB Master

-l

I/F

HSB Master

-

17.4 Product Dependencies

I/F

A

Y

irg_dma

Y

Interrupt
CFG Generator
[Channel 1
Channel 0
FIFO
SRC DST | |
FSM FSM

In order to use this module, other parts of the system must be configured correctly, as described

below.
17.41 I/0 Lines

The pins used for interfacing the compliant external devices may be multiplexed with GPIO lines.
The user must first program the GPIO controller to assign the DMACA pins to their peripheral

functions.

17.4.2 Power Management

To prevent bus errors the DMACA operation must be terminated before entering sleep mode.

17.4.3 Clocks

The CLK_DMACA to the DMACA is generated by the Power Manager (PM). Before using the
DMACA, the user must ensure that the DMACA clock is enabled in the power manager.

17.4.4 Interrupts

The DMACA interface has an interrupt line connected to the Interrupt Controller. Handling the
DMACA interrupt requires programming the interrupt controller before configuring the DMACA.

17.45 Peripherals

Both the source peripheral and the destination peripheral must be set up correctly prior to the

DMA transfer.

32003M-AVR32-09/09

ATMEL

Y 5

175

17.5 Functional Description
17.5.1 Basic Definitions

Source peripheral: Device on a System Bus layer from where the DMACA reads data, which is
then stored in the channel FIFO. The source peripheral teams up with a destination peripheral to
form a channel.

Destination peripheral: Device to which the DMACA writes the stored data from the FIFO (pre-
viously read from the source peripheral).

Memory: Source or destination that is always “ready” for a DMA transfer and does not require a
handshaking interface to interact with the DMACA. A peripheral should be assigned as memory
only if it does not insert more than 16 wait states. If more than 16 wait states are required, then
the peripheral should use a handshaking interface (the default if the peripheral is not pro-
grammed to be memory) in order to signal when it is ready to accept or supply data.

Channel: Read/write datapath between a source peripheral on one configured System Bus
layer and a destination peripheral on the same or different System Bus layer that occurs through
the channel FIFO. If the source peripheral is not memory, then a source handshaking interface
is assigned to the channel. If the destination peripheral is not memory, then a destination hand-
shaking interface is assigned to the channel. Source and destination handshaking interfaces can
be assigned dynamically by programming the channel registers.

Master interface: DMACA is a master on the HSB bus reading data from the source and writing
it to the destination over the HSB bus.

Slave interface: The HSB interface over which the DMACA is programmed. The slave interface
in practice could be on the same layer as any of the master interfaces or on a separate layer.

Handshaking interface: A set of signal registers that conform to a protocol and handshake
between the DMACA and source or destination peripheral to control the transfer of a single or
burst transaction between them. This interface is used to request, acknowledge, and control a
DMACA transaction. A channel can receive a request through one of three types of handshaking
interface: hardware, software, or peripheral interrupt.

Hardware handshaking interface: Uses hardware signals to control the transfer of a single or
burst transaction between the DMACA and the source or destination peripheral.

Software handshaking interface: Uses software registers to control the transfer of a single or
burst transaction between the DMACA and the source or destination peripheral. No special
DMACA handshaking signals are needed on the I/O of the peripheral. This mode is useful for
interfacing an existing peripheral to the DMACA without modifying it.

Peripheral interrupt handshaking interface: A simple use of the hardware handshaking inter-
face. In this mode, the interrupt line from the peripheral is tied to the dma_req input of the
hardware handshaking interface. Other interface signals are ignored.

Flow controller: The device (either the DMACA or source/destination peripheral) that deter-
mines the length of and terminates a DMA block transfer. If the length of a block is known before
enabling the channel, then the DMACA should be programmed as the flow controller. If the
length of a block is not known prior to enabling the channel, the source or destination peripheral
needs to terminate a block transfer. In this mode, the peripheral is the flow controller.

Flow control mode (CFGx.FCMODE): Special mode that only applies when the destination
peripheral is the flow controller. It controls the pre-fetching of data from the source peripheral.

Alm L 176

32003M-AVR32-09/09 I ©

Transfer hierarchy: Figure 17-2 on page 177 illustrates the hierarchy between DMACA trans-
fers, block transfers, transactions (single or burst), and System Bus transfers (single or burst) for
non-memory peripherals. Figure 17-3 on page 177 shows the transfer hierarchy for memory.

Figure 17-2. DMACA Transfer Hierarchy for Non-Memory Peripheral

DMAC Transfer DMA Transfer
| Level
Block Transfer
Block Block Block Level
\ v ./ v
Burst Burst Burst Single DMA Transaction
Transaction | [Transaction Transaction Transaction| Level
v v Y Y l
System Bus System Bus System Bus System Bus Syst_em Bus
Burst Burst |---- Burst Single Single System Bus
Transfer Transfer Transfer Transfer Transfer Transfer Level
Figure 17-3. DMACA Transfer Hierarchy for Memory
DMAC Transfer DMA Transfer

| Level

v v v

Block Block Block Block Transfer
o o oe Level
|
System Bus| |System Bus System Bus| [System Bus
Burst Burst [---{ Burst Single System Bus
Transfer Transfer Transfer Transfer Transfer Level

Block: A block of DMACA data. The amount of data (block length) is determined by the flow
controller. For transfers between the DMACA and memory, a block is broken directly into a
sequence of System Bus bursts and single transfers. For transfers between the DMACA and a
non-memory peripheral, a block is broken into a sequence of DMACA transactions (single and
bursts). These are in turn broken into a sequence of System Bus transfers.

Transaction: A basic unit of a DMACA transfer as determined by either the hardware or soft-
ware handshaking interface. A transaction is only relevant for transfers between the DMACA
and a source or destination peripheral if the source or destination peripheral is a non-memory
device. There are two types of transactions: single and burst.

AIMEL 77

32003M-AVR32-09/09 I ©

— Single transaction: The length of a single transaction is always 1 and is converted to
a single System Bus transfer.

— Burst transaction: The length of a burst transaction is programmed into the DMACA.
The burst transaction is converted into a sequence of System Bus bursts and single
transfers. DMACA executes each burst transfer by performing incremental bursts that
are no longer than the maximum System Bus burst size set. The burst transaction
length is under program control and normally bears some relationship to the FIFO
sizes in the DMACA and in the source and destination peripherals.

DMA transfer: Software controls the number of blocks in a DMACA transfer. Once the DMA
transfer has completed, then hardware within the DMACA disables the channel and can gener-
ate an interrupt to signal the completion of the DMA transfer. You can then re-program the
channel for a new DMA transfer.

Single-block DMA transfer: Consists of a single block.

Multi-block DMA transfer: A DMA transfer may consist of multiple DMACA blocks. Multi-block
DMA transfers are supported through block chaining (linked list pointers), auto-reloading of
channel registers, and contiguous blocks. The source and destination can independently select
which method to use.

— Linked lists (block chaining) — A linked list pointer (LLP) points to the location in
system memory where the next linked list item (LLI) exists. The LLI is a set of registers
that describe the next block (block descriptor) and an LLP register. The DMACA
fetches the LLI at the beginning of every block when block chaining is enabled.

— Auto-reloading — The DMACA automatically reloads the channel registers at the end
of each block to the value when the channel was first enabled.

— Contiguous blocks — Where the address between successive blocks is selected to
be a continuation from the end of the previous block.

Scatter: Relevant to destination transfers within a block. The destination System Bus address is
incremented or decremented by a programmed amount -the scatter increment- when a scatter
boundary is reached. The destination System Bus address is incremented or decremented by
the value stored in the destination scatter increment (DSRx.DSI) field, multiplied by the number
of bytes in a single HSB transfer to the destination (decoded value of CTLx.DST_TR_WIDTH)/8.
The number of destination transfers between successive scatter boundaries is programmed into
the Destination Scatter Count (DSC) field of the DSRx register.

Scatter is enabled by writing a ‘1’ to the CTLx.DST_SCATTER_EN bit. The CTLx.DINC field
determines if the address is incremented, decremented or remains fixed when a scatter bound-
ary is reached. If the CTLx.DINC field indicates a fixed-address control throughout a DMA
transfer, then the CTLx.DST_SCATTER_EN bit is ignored, and the scatter feature is automati-
cally disabled.

Gather: Relevant to source transfers within a block. The source System Bus address is incre-
mented or decremented by a programmed amount when a gather boundary is reached. The
number of System Bus transfers between successive gather boundaries is programmed into the
Source Gather Count (SGRx.SGC) field. The source address is incremented or decremented by
the value stored in the source gather increment (SGRx.SGl) field multiplied by the number of
bytes in a single HSB transfer from the source -(decoded value of CTLx.SRC_TR_WIDTH)/8 -
when a gather boundary is reached.

Gather is enabled by writing a ‘1’ to the CTLx.SRC_GATHER_EN bit. The CTLx.SINC field
determines if the address is incremented, decremented or remains fixed when a gather bound-

Alm L 178

32003M-AVR32-09/09 I ©

ary is reached. If the CTLx.SINC field indicates a fixed-address control throughout a DMA
transfer, then the CTLx.SRC_GATHER_EN bit is ignored and the gather feature is automatically
disabled.

Note: For multi-block transfers, the counters that keep track of the number of transfer left to
reach a gather/scatter boundary are re-initialized to the source gather count (SGRx.SGC) and
destination scatter count (DSRx.DSC), respectively, at the start of each block transfer.

Figure 17-4. Destination Scatter Transfer

System Memory
o1 - Scatter Boundary AQ + 0x220
A3
AO +0x218 \a1
D10 SN
—
A0 +0x210 -
D9 A;'/ ----- ~—
AD+0x208—— S T -
D8 o’ ~..
AQ +0x200 I R
""""""""" Data Stream
Scatter Increment > 0|t |2 | a3 |4 |a5 |a6|d7|ds | do|ato) d11\<J
0x 080 —
! < > - Scatter Boundary AO + 0x120
D7 i
A0 +0x118 d7 "
D6 :\%/ ///:,':,’
A0 +0x110 -
D5 &7
A0 +0x108 S
D4 y
A0 +0x100 I j
/
Scatter Increment >
0x 080 ,
!l Scatter Boundary A0 + 0x020
D3 v 3
A0 +0x018 |
D2 [l
A0 +0x010 D1 ;f/‘?‘ CTLx.DST_TR _WIDTH = 3'b011 (64bit/8 = 8 bytes)
AO + 0x008 ' do DSR.DSI =16
DO DSR.DSC=4
A0 DSR.DSI * 8 = 0x80 (Scatter Increment in bytes)

AIMEL 179

32003M-AVR32-09/09 I ©

Figure 17-5. Source Gather Transfer

System Memory
-« Gather Boundary AO + 0x38
A0+ OXO34 D11 Gather Increment =4
+

D10
A0 +0x030—————— "N

D9 e
A0 + 0x02C S T Data Stream

D8 o — >
AD+ Ox028 (0| d1 | a2 |03] a4 o6 | a6 |7 |8 | ao]ato] ar1f>

4

AQ + 0x020 < L Gather Boundary A0 + 0x24

D7 a7 Gather | t=14
A0+ 0x01C — \\ //.?.,., er Incremen
A0 +0x018 A

D5 S
A0 +0x014 S

D4 /

/
« Gather Boundary A0 + 0x10

A0+ 0x00C D3 B3 Gather Increment = 4

D2 -y
AD +0x008 - v CTLx.SRC_TR WIDTH = 3b010 (32bit/8 = 4 bytes)
AQ + 0x004 J o SGRSGI =1

DO ' SGRSGC =4

AD SGRSGI * 4 = Ox4 (Gather Increment in bytes)

Channel locking: Software can program a channel to keep the HSB master interface by locking
the arbitration for the master bus interface for the duration of a DMA transfer, block, or transac-
tion (single or burst).

Bus locking: Software can program a channel to maintain control of the System Bus bus by
asserting hlock for the duration of a DMA transfer, block, or transaction (single or burst). Chan-
nel locking is asserted for the duration of bus locking at a minimum.

FIFO mode: Special mode to improve bandwidth. When enabled, the channel waits until the
FIFO is less than half full to fetch the data from the source peripheral and waits until the FIFO is
greater than or equal to half full to send data to the destination peripheral. Thus, the channel can
transfer the data using System Bus bursts, eliminating the need to arbitrate for the HSB master
interface for each single System Bus transfer. When this mode is not enabled, the channel only
waits until the FIFO can transmit/accept a single System Bus transfer before requesting the
master bus interface.

Pseudo fly-by operation: Typically, it takes two System Bus cycles to complete a transfer, one
for reading the source and one for writing to the destination. However, when the source and des-
tination peripherals of a DMA transfer are on different System Bus layers, it is possible for the
DMACA to fetch data from the source and store it in the channel FIFO at the same time as the
DMACA extracts data from the channel FIFO and writes it to the destination peripheral. This
activity is known as pseudo fly-by operation. For this to occur, the master interface for both
source and destination layers must win arbitration of their HSB layer. Similarly, the source and
destination peripherals must win ownership of their respective master interfaces.

Alm L 180

32003M-AVR32-09/09 I ©

17.6 Arbitration for HSB Master Interface

Each DMACA channel has two request lines that request ownership of a particular master bus
interface: channel source and channel destination request lines.

Source and destination arbitrate separately for the bus. Once a source/destination state
machine gains ownership of the master bus interface and the master bus interface has owner-
ship of the HSB bus, then HSB transfers can proceed between the peripheral and the DMACA.

An arbitration scheme decides which of the request lines (2 * DMAH_NUM_CHANNELS) is
granted the particular master bus interface. Each channel has a programmable priority. A
request for the master bus interface can be made at any time, but is granted only after the cur-
rent HSB transfer (burst or single) has completed. Therefore, if the master interface is
transferring data for a lower priority channel and a higher priority channel requests service, then
the master interface will complete the current burst for the lower priority channel before switch-
ing to transfer data for the higher priority channel.

If only one request line is active at the highest priority level, then the request with the highest pri-
ority wins ownership of the HSB master bus interface; it is not necessary for the priority levels to
be unique.

If more than one request is active at the highest requesting priority, then these competing
requests proceed to a second tier of arbitration:

If equal priority requests occur, then the lower-numbered channel is granted.

In other words, if a peripheral request attached to Channel 7 and a peripheral request attached
to Channel 8 have the same priority, then the peripheral attached to Channel 7 is granted first.

17.7 Memory Peripherals

Figure 17-3 on page 177 shows the DMA transfer hierarchy of the DMACA for a memory periph-
eral. There is no handshaking interface with the DMACA, and therefore the memory peripheral
can never be a flow controller. Once the channel is enabled, the transfer proceeds immediately
without waiting for a transaction request. The alternative to not having a transaction-level hand-
shaking interface is to allow the DMACA to attempt System Bus transfers to the peripheral once
the channel is enabled. If the peripheral slave cannot accept these System Bus transfers, it
inserts wait states onto the bus until it is ready; it is not recommended that more than 16 wait
states be inserted onto the bus. By using the handshaking interface, the peripheral can signal to
the DMACA that it is ready to transmit/receive data, and then the DMACA can access the
peripheral without the peripheral inserting wait states onto the bus.

17.8 Handshaking Interface

Handshaking interfaces are used at the transaction level to control the flow of single or burst
transactions. The operation of the handshaking interface is different and depends on whether
the peripheral or the DMACA is the flow controller.

The peripheral uses the handshaking interface to indicate to the DMACA that it is ready to trans-
fer/accept data over the System Bus. A non-memory peripheral can request a DMA transfer
through the DMACA using one of two handshaking interfaces:

¢ Hardware handshaking

» Software handshaking

Alm L 181

32003M-AVR32-09/09 I ©

Software selects between the hardware or software handshaking interface on a per-channel
basis. Software handshaking is accomplished through memory-mapped registers, while hard-
ware handshaking is accomplished using a dedicated handshaking interface.

17.8.1 Software Handshaking

When the slave peripheral requires the DMACA to perform a DMA transaction, it communicates
this request by sending an interrupt to the CPU or interrupt controller.

The interrupt service routine then uses the software registers to initiate and control a DMA trans-
action. These software registers are used to implement the software handshaking interface.

The HS_SEL_SRC/HS_SEL_DST bit in the CFGx channel configuration register must be set to
enable software handshaking.

When the peripheral is not the flow controller, then the last transaction registers LstSrcReg and
LstDstReg are not used, and the values in these registers are ignored.

17.8.1.1 Burst Transactions

Writing a 1 to the ReqSrcReg[x]/ReqDstReg|[x] register is always interpreted as a burst transac-
tion request, where x is the channel number. However, in order for a burst transaction request to
start, software must write a 1 to the SglReqSrcReg[x]/SglRegDstReg[x] register.

You can write a 1 to the SgIReqSrcReg[x]/SgIReqDstReg[x] and ReqSrcReg[x]/ReqDstReg[x]
registers in any order, but both registers must be asserted in order to initiate a burst transaction.
Upon completion of the burst transaction, the hardware clears the SglReqSrcReg[x]/SgIReqD-
stReg[x] and ReqSrcReg[x]/ReqDstReg[x] registers.

17.8.1.2 Single Transactions

Writing a 1 to the SglIReqSrcReg/SglReqDstReg initiates a single transaction. Upon completion
of the single transaction, both the SgIReqSrcReg/SglReqgDstReg and ReqSrcReg/ReqDstReg
bits are cleared by hardware. Therefore, writing a 1 to the ReqSrcReg/ReqDstReg is ignored
while a single transaction has been initiated, and the requested burst transaction is not serviced.

Again, writing a 1 to the ReqSrcReg/ReqDstReg register is always a burst transaction request.
However, in order for a burst transaction request to start, the corresponding channel bit in the
SglReqSrcReg/SglReqDstReg must be asserted. Therefore, to ensure that a burst transaction is
serviced, you must write a 1 to the ReqSrcReg/ReqDstReg before writing a 1 to the SgIReqSr-
cReg/SglReqDstReg register.

Software can poll the relevant channel bit in the SglIReqSrcReg/ SglIReqDstReg and ReqSr-
cReg/ReqgDstReg registers. When both are 0, then either the requested burst or single
transaction has completed. Alternatively, the IntSrcTran or IntDstTran interrupts can be enabled
and unmasked in order to generate an interrupt when the requested source or destination trans-
action has completed.

Note: The transaction-complete interrupts are triggered when both single and burst transactions are
complete. The same transaction-complete interrupt is used for both single and burst transactions.

17.8.2 Hardware Handshaking

There are 11 hardware handshaking interfaces between the DMACA and peripherals. Refer to
the module configuration chapter for the device-specific mapping of these interfaces.

Alm L 182

32003M-AVR32-09/09 I ©

17.8.2.1 External DMA Request Definition

When an external slave peripheral requires the DMACA to perform DMA transactions, it commu-
nicates its request by asserting the external NDMAREQXx signal. This signal is resynchronized to
ensure a proper functionality (see "External DMA Request Timing” on page 183).

The external NDMAREQXx signal should be asserted when the source threshold level is reached.
After resynchronization, the rising edge of dma_req starts the transfer.

The external nDMAREQXx signal must be de-asserted after the last transfer and re-asserted
again before a new transaction starts.

For a source FIFO, an active edge should be triggered on nDMAREQx when the source FIFO
exceeds a watermark level. For a destination FIFO, an active edge should be triggered on
nDMAREQx when the destination FIFO drops below the watermark level.

The source transaction length, CTLx.SRC_MSIZE, and destination transaction length,
CTLx.DEST_MSIZE, must be set according to watermark levels on the source/destination
peripherals.

Figure 17-6. External DMA Request Timing

o JUUUUUULUULUUDUUyUL vyl

DMA Transaction

nDMAREQx _| I ,_\

dma_ack - I_I

17.9 DMACA Transfer Types

DMA Transfers

<‘ { DMA Transfers »

-

A DMA transfer may consist of single or multi-block transfers. On successive blocks of a multi-
block transfer, the SARx/DARX register in the DMACA is reprogrammed using either of the fol-
lowing methods:

* Block chaining using linked lists

* Auto-reloading

» Contiguous address between blocks

On successive blocks of a multi-block transfer, the CTLx register in the DMACA is re-pro-
grammed using either of the following methods:

¢ Block chaining using linked lists

¢ Auto-reloading

When block chaining, using linked lists is the multi-block method of choice, and on successive
blocks, the LLPx register in the DMACA is re-programmed using the following method:

* Block chaining using linked lists

Alm L 183

32003M-AVR32-09/09 I ©

A block descriptor (LLI) consists of following registers, SARx, DARx, LLPx, CTL. These regis-
ters, along with the CFGx register, are used by the DMACA to set up and describe the block
transfer.

17.9.1 Multi-block Transfers

17.9.1.1 Block Chaining Using Linked Lists

In this case, the DMACA re-programs the channel registers prior to the start of each block by
fetching the block descriptor for that block from system memory. This is known as an LLI update.

DMACA block chaining is supported by using a Linked List Pointer register (LLPx) that stores the
address in memory of the next linked list item. Each LLI (block descriptor) contains the corre-
sponding block descriptor (SARx, DARX, LLPx, CTLx).

To set up block chaining, a sequence of linked lists must be programmed in memory.

The SARXx, DARX, LLPx and CTLx registers are fetched from system memory on an LLI update.
The updated contents of the CTLx register are written back to memory on block completion. Fig-
ure 17-7 on page 184 shows how to use chained linked lists in memory to define multi-block
transfers using block chaining.

The Linked List multi-block transfers is initiated by programming LLPx with LLPx(0) (LLI(0) base
address) and CTLx with CTLx.LLP_S_EN and CTLx.LLP_D_EN.

Figure 17-7. Multi-block Transfer Using Linked Lists

System Memory

LLI(0) LLI(1)
CTLX[63..32] CTLX[63..32]
CTLX[31..0] CTLX[31..0]
LLPx(1) LLPx(2)
DARx DARX
LLPK’ SARX T SARX > LLPx(2)

32003M-AVR32-09/09

ATMEL

Y 5

Table 17-1. Programming of Transfer Types and Channel Register Update Method (DMACA State Machine Table)
RELOAD RELOAD_ | CTLx,
LLP. LLP_S_EN | _SR LLP_D_EN | DS LLPx SARX DARX
Transfer Type LOC ((((Update Update Update | Write
=0 CTLx) CFGx) CTLx) CFGx) Method Method Method | Back
1) Single Block or None. user None
last transfer of Yes 0 0 0 0 re ro’ rams None (single) (single) No
multi-Block prog ¢
2) Agto Reload CTLx,LLPx are
multi-block transfer . Auto-
. - Yes 0 0 0 1 reloaded from Contiguous No
with contiguous initial values Reload
SAR ’
C;) ﬁttt())loiilﬁggsfer CTLx,LLPx are Con-
_u . Yes 0 1 0 0 reloaded from Auto-Reload . No
with contiguous initial values tiguous
DAR ’
CTLx,LLPx are
4) Agto Reload Yes 0 1 0 1 reloaded from Auto-Reload Auto- No
multi-block transfer o Reload
initial values.
5) Single Block or None. user None
last transfer of No 0 0 0 0 re r07 rams None (single) (single) Yes
multi-block prog 9
6) Linked List CTLx,LLPx
multi-block transfer loaded from . Linked
with contiguous No 0 0 ! 0 next Linked List Contiguous List Yes
SAR item
7) Linked List CTLx,LLPx
multi-block transfer loaded from Linked
with auto-reload No 0 1 1 0 next Linked List | ~uto-Reload List Yes
SAR item
8) Linked List CTLx,LLPx
multi-block transfer loaded from . . Con-
with contiguous No ! 0 0 0 next Linked List Linked List tiguous Yes
DAR item
9) Linked List CTLx,LLPx
multi-block transfer loaded from . . Auto-
with auto-reload No 1 0 0 1 next Linked List Linked List Reload Yes
DAR item
CTLx,LLPx
10) Linked List loaded from . . Linked
multi-block transfer No 1 0 1 0 next Linked List Linked List List Yes
item

17.9.1.2

Auto-reloading of Channel Registers

During auto-reloading, the channel registers are reloaded with their initial values at the comple-
tion of each block and the new values used for the new block. Depending on the row number in
Table 17-1 on page 185, some or all of the SARx, DARx and CTLx channel registers are
reloaded from their initial value at the start of a block transfer.

17.9.1.3 Contiguous Address Between Blocks

In this case, the address between successive blocks is selected to be a continuation from the
end of the previous block. Enabling the source or destination address to be contiguous between

ATMEL

Y 5

185
32003M-AVR32-09/09

17.9.1.4

17.9.2

32003M-AVR32-09/09

blocks is a function of CTLx.LLP_S_EN, CFGx.RELOAD_SR, CTLx.LLP_D_EN, and
CFGx.RELOAD_DS registers (see Figure 17-1 on page 175).

Note: Both SARx and DARXx updates cannot be selected to be contiguous. If this functionality is
required, the size of the Block Transfer (CTLx.BLOCK_TS) must be increased. If this is at the max-
imum value, use Row 10 of Table 17-1 on page 185 and setup the LLI.SARx address of the
block descriptor to be equal to the end SARx address of the previous block. Similarly, setup the
LLI.DARx address of the block descriptor to be equal to the end DARx address of the previous
block.

Suspension of Transfers Between Blocks

At the end of every block transfer, an end of block interrupt is asserted if:

¢ interrupts are enabled, CTLx.INT_EN = 1
e the channel block interrupt is unmasked, MaskBlock[n] = 0, where n is the channel number.
Note: The block complete interrupt is generated at the completion of the block transfer to the destination.

For rows 6, 8, and 10 of Table 17-1 on page 185, the DMA transfer does not stall between block
transfers. For example, at the end of block N, the DMACA automatically proceeds to block N + 1.

For rows 2, 3, 4, 7, and 9 of Table 17-1 on page 185 (SARx and/or DARx auto-reloaded between
block transfers), the DMA transfer automatically stalls after the end of block. Interrupt is asserted
if the end of block interrupt is enabled and unmasked.

The DMACA does not proceed to the next block transfer until a write to the block interrupt clear
register, ClearBlock[n], is performed by software. This clears the channel block complete
interrupt.

For rows 2, 3, 4, 7, and 9 of Table 17-1 on page 185 (SARx and/or DARx auto-reloaded between
block transfers), the DMA transfer does not stall if either:

¢ interrupts are disabled, CTLx.INT_EN =0, or
e the channel block interrupt is masked, MaskBlock[n] = 1, where n is the channel number.

Channel suspension between blocks is used to ensure that the end of block ISR (interrupt ser-
vice routine) of the next-to-last block is serviced before the start of the final block commences.
This ensures that the ISR has cleared the CFGx.RELOAD_SR and/or CFGx.RELOAD_DS bits
before completion of the final block. The reload bits CFGx.RELOAD_SR and/or
CFGx.RELOAD_DS should be cleared in the ‘end of block ISR’ for the next-to-last block
transfer.

Ending Multi-block Transfers

All multi-block transfers must end as shown in either Row 1 or Row 5 of Table 17-1 on page 185.
At the end of every block transfer, the DMACA samples the row number, and if the DMACA is in
Row 1 or Row 5 state, then the previous block transferred was the last block and the DMA trans-
fer is terminated.

Note: Row 1 and Row 5 are used for single block transfers or terminating multiblock transfers. Ending in
Row 5 state enables status fetch for the last block. Ending in Row 1 state disables status fetch for
the last block.

For rows 2,3 and 4 of Table 17-1 on page 185, (LLPx = 0 and CFGx.RELOAD_SR and/or

CFGx.RELOAD_DS is set), multi-block DMA transfers continue until both the

CFGx.RELOAD_SR and CFGx.RELOAD_DS registers are cleared by software. They should be

Alm L 186

Y 5

programmed to zero in the end of block interrupt service routine that services the next-to-last
block transfer. This puts the DMACA into Row 1 state.

For rows 6, 8, and 10 (both CFGx.RELOAD_SR and CFGx.RELOAD_DS cleared) the user must
setup the last block descriptor in memory such that both LLI.CTLx.LLP_S_EN and
LLI.CTLx.LLP_D_EN are zero. If the LLI.LLPx register of the last block descriptor in memory is
non-zero, then the DMA transfer is terminated in Row 5. If the LLI.LLPx register of the last block
descriptor in memory is zero, then the DMA transfer is terminated in Row 1.

For rows 7 and 9, the end-of-block interrupt service routine that services the next-to-last block
transfer should clear the CFGx.RELOAD_SR and CFGx.RELOAD_DS reload bits. The last
block descriptor in memory should be set up so that both the LLI.CTLx.LLP_S_EN and
LLI.CTLx.LLP_D_EN are zero. If the LLI.LLPx register of the last block descriptor in memory is
non-zero, then the DMA transfer is terminated in Row 5. If the LLI.LLPx register of the last block
descriptor in memory is zero, then the DMA transfer is terminated in Row 1.

Note: The only allowed transitions between the rows of Table 17-1 on page 185are from any row into
row 1 or row 5. As already stated, a transition into row 1 or row 5 is used to terminate the DMA
transfer. All other transitions between rows are not allowed. Software must ensure that illegal tran-
sitions between rows do not occur between blocks of a multi-block transfer. For example, if block N
is in row 10 then the only allowed rows for block N + 1 are rows 10, 5 or 1.

17.10 Programming a Channel

Three registers, the LLPx, the CTLx and CFGx, need to be programmed to set up whether single
or multi-block transfers take place, and which type of multi-block transfer is used. The different
transfer types are shown in Table 17-1 on page 185.

The “Update Method” column indicates where the values of SARx, DARx, CTLx, and LLPx are
obtained for the next block transfer when multi-block DMACA transfers are enabled.

Note: In Table 17-1 on page 185, all other combinations of LLPx.LOC = 0, CTLx.LLP_S_EN,
CFGx.RELOAD_SR, CTLx.LLP_D_EN, and CFGx.RELOAD_DS are illegal, and causes indeter-
minate or erroneous behavior.

17.10.1 Programming Examples
17.10.1.1 Single-block Transfer (Row 1)

Row 5 in Table 17-1 on page 185 is also a single block transfer.

1. Read the Channel Enable register to choose a free (disabled) channel.

2. Clear any pending interrupts on the channel from the previous DMA transfer by writing to
the Interrupt Clear registers: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran, ClearErr.
Reading the Interrupt Raw Status and Interrupt Status registers confirms that all inter-
rupts have been cleared.

3. Program the following channel registers:
a. Write the starting source address in the SARX register for channel x.
b. Write the starting destination address in the DARX register for channel x.

c. Program CTLx and CFGx according to Row 1 as shown in Table 17-1 on page 185.
Program the LLPx register with ‘0’.

d. Write the control information for the DMA transfer in the CTLx register for channel x.
For example, in the register, you can program the following:

— i. Set up the transfer type (memory or non-memory peripheral for source and
destination) and flow control device by programming the TT_FC of the CTLx register.

Alm L 187

32003M-AVR32-09/09 I ©

— ii. Set up the transfer characteristics, such as:
— Transfer width for the source in the SRC_TR_WIDTH field.
— Transfer width for the destination in the DST_TR_WIDTH field.
— Source master layer in the SMS field where source resides.
— Destination master layer in the DMS field where destination resides.
— Incrementing/decrementing or fixed address for source in SINC field.
— Incrementing/decrementing or fixed address for destination in DINC field.
e. Write the channel configuration information into the CFGx register for channel x.

— i. Designate the handshaking interface type (hardware or software) for the source and
destination peripherals. This is not required for memory. This step requires
programming the HS_SEL_SRC/HS_SEL_DST bits, respectively. Writing a ‘0’
activates the hardware handshaking interface to handle source/destination requests.
Writing a ‘1’ activates the software handshaking interface to handle source/destination
requests.

— ii. If the hardware handshaking interface is activated for the source or destination
peripheral, assign a handshaking interface to the source and destination peripheral.
This requires programming the SRC_PER and DEST_PER bits, respectively.
4. After the DMACA selected channel has been programmed, enable the channel by writing

a ‘1’ to the ChEnReg.CH_EN bit. Make sure that bit 0 of the DmaCfgReg register is
enabled.

5. Source and destination request single and burst DMA transactions to transfer the block of
data (assuming non-memory peripherals). The DMACA acknowledges at the completion
of every transaction (burst and single) in the block and carry out the block transfer.

6. Once the transfer completes, hardware sets the interrupts and disables the channel. At
this time you can either respond to the Block Complete or Transfer Complete interrupts,
or poll for the Channel Enable (ChEnReg.CH_EN) bit until it is cleared by hardware, to
detect when the transfer is complete.

17.10.1.2 Multi-block Transfer with Linked List for Source and Linked List for Destination (Row 10)

1. Read the Channel Enable register to choose a free (disabled) channel.

2. Set up the chain of Linked List Items (otherwise known as block descriptors) in memory.
Write the control information in the LLI.CTLx register location of the block descriptor for
each LLI in memory (see Figure 17-7 on page 184) for channel x. For example, in the
register, you can program the following:

a. Set up the transfer type (memory or non-memory peripheral for source and destina-
tion) and flow control device by programming the TT_FC of the CTLx register.

b. Set up the transfer characteristics, such as:

. Transfer width for the source in the SRC_TR_WIDTH field.

— ii. Transfer width for the destination in the DST_TR_WIDTH field.
— iii. Source master layer in the SMS field where source resides.

— iv. Destination master layer in the DMS field where destination resides.
— v. Incrementing/decrementing or fixed address for source in SINC field.
— vi. Incrementing/decrementing or fixed address for destination DINC field.
3. Write the channel configuration information into the CFGx register for channel x.

a. Designate the handshaking interface type (hardware or software) for the source and
destination peripherals. This is not required for memory. This step requires program-

Alm L 188

32003M-AVR32-09/09 I ©

ming the HS_SEL_SRC/HS_SEL_DST bits, respectively. Writing a ‘0’ activates the
hardware handshaking interface to handle source/destination requests for the spe-
cific channel. Writing a ‘1’ activates the software handshaking interface to handle
source/destination requests.

b. If the hardware handshaking interface is activated for the source or destination
peripheral, assign the handshaking interface to the source and destination periph-
eral. This requires programming the SRC_PER and DEST_PER bits, respectively.

4. Make sure that the LLI.CTLx register locations of all LLI entries in memory (except the
last) are set as shown in Row 10 of Table 17-1 on page 185. The LLI.CTLx register of the
last Linked List Item must be set as described in Row 1 or Row 5 of Table 17-1 on page
185. Figure 17-9 on page 191 shows a Linked List example with two list items.

5. Make sure that the LLI.LLPx register locations of all LLI entries in memory (except the
last) are non-zero and point to the base address of the next Linked List ltem.

6. Make sure that the LLI.SARx/LLI.DARX register locations of all LLI entries in memory
point to the start source/destination block address preceding that LLI fetch.

7. Make sure that the LLI.CTLx.DONE field of the LLI.CTLx register locations of all LLI
entries in memory are cleared.

8. Clear any pending interrupts on the channel from the previous DMA transfer by writing to
the Interrupt Clear registers: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran, ClearErr.
Reading the Interrupt Raw Status and Interrupt Status registers confirms that all inter-
rupts have been cleared.

9. Program the CTLx, CFGx registers according to Row 10 as shown in Table 17-1 on page
185.

10. Program the LLPx register with LLPx(0), the pointer to the first Linked List item.

11. Finally, enable the channel by writing a ‘1’ to the ChEnReg.CH_EN bit. The transfer is
performed.

12. The DMACA fetches the first LLI from the location pointed to by LLPx(0).

Note: The LLI.SARXx, LLI. DARX, LLI.LLPx and LLI.CTLx registers are fetched. The DMACA automati-
cally reprograms the SARx, DARx, LLPx and CTLx channel registers from the LLPx(0).
13. Source and destination request single and burst DMA transactions to transfer the block of
data (assuming non-memory peripheral). The DMACA acknowledges at the completion
of every transaction (burst and single) in the block and carry out the block transfer.

Note: Table 17-1 on page 185

14. The DMACA does not wait for the block interrupt to be cleared, but continues fetching the
next LLI from the memory location pointed to by current LLPx register and automatically
reprograms the SARx, DARX, LLPx and CTLx channel registers. The DMA transfer con-
tinues until the DMACA determines that the CTLx and LLPx registers at the end of a
block transfer match that described in Row 1 or Row 5 of Table 17-1 on page 185. The
DMACA then knows that the previous block transferred was the last block in the DMA
transfer. The DMA transfer might look like that shown in Figure 17-8 on page 190.

Alm L 189

32003M-AVR32-09/09 I ©

Figure 17-8. Multi-Block with Linked List Address for Source and Destination

Address of

Address of R
Destination Layer

Source Layer

Block 2 Block 2
SAR(2) —» DAR(2) —>
Block 1 Block 1
SAR(1) — DAR(1) —>
Block O Block O
SAR(0) —» DAR(0) —
Source Blocks Destination Blocks

If the user needs to execute a DMA transfer where the source and destination address are con-
tiguous but the amount of data to be transferred is greater than the maximum block size
CTLx.BLOCK_TS, then this can be achieved using the type of multi-block transfer as shown in
Figure 17-9 on page 191.

Alm L 190

Y 5

32003M-AVR32-09/09

Figure 17-9. Multi-Block with Linked Address for Source and Destination Blocks are

Contiguous
Address of Address of
Source Layer Destination Layer
Block 2
/ < DAR@®)
Block 2 Block 2
SAR@3) —> / < DAR(?)
Block 2 Block 1
SAR(2) —— / <« DAR(1)
Block 1 Block 0
SAR(1) —> / . DAR()
Block 0
SAR(0) —
Source Blocks Destination Blocks

The DMA transfer flow is shown in Figure 17-11 on page 194.

Alm L 191

32003M-AVR32-09/09 I ©

Figure 17-10. DMA Transfer Flow for Source and Destination Linked List Address

Channel enabled by
software

!

LLI Fetch D

v

Hardware reprograms
SARx, DARx, CTLx, LLPx

v

DMAC block transfer

!

Source/destination
status fetch

Block Complete interrupt > l
generated here

Is DMAC in
Row1 of
MAC State Machine Table?

no

DMAC transfer Complete
interrupt generated here

yes

Channel Disabled by
hardware

17.10.1.3 Multi-block Transfer with Source Address Auto-reloaded and Destination Address Auto-reloaded (Row 4)

1. Read the Channel Enable register to choose an available (disabled) channel.

2. Clear any pending interrupts on the channel from the previous DMA transfer by writing to
the Interrupt Clear registers: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran, ClearErr.
Reading the Interrupt Raw Status and Interrupt Status registers confirms that all inter-
rupts have been cleared.

3. Program the following channel registers:

AIMEL 192

32003M-AVR32-09/09 I ©

a. Write the starting source address in the SARX register for channel x.
Write the starting destination address in the DARX register for channel x.

Program CTLx and CFGx according to Row 4 as shown in Table 17-1 on page 185.
Program the LLPx register with ‘0’.
d. Write the control information for the DMA transfer in the CTLx register for channel x.
For example, in the register, you can program the following:
— i. Set up the transfer type (memory or non-memory peripheral for source and
destination) and flow control device by programming the TT_FC of the CTLx register.

— ii. Set up the transfer characteristics, such as:
— Transfer width for the source in the SRC_TR_WIDTH field.
— Transfer width for the destination in the DST_TR_WIDTH field.
— Source master layer in the SMS field where source resides.
— Destination master layer in the DMS field where destination resides.
— Incrementing/decrementing or fixed address for source in SINC field.
— Incrementing/decrementing or fixed address for destination in DINC field.

e. Write the channel configuration information into the CFGx register for channel x.
Ensure that the reload bits, CFGx. RELOAD_SR and CFGx.RELOAD_DS are
enabled.

— i. Designate the handshaking interface type (hardware or software) for the source and
destination peripherals. This is not required for memory. This step requires
programming the HS_SEL_SRC/HS_SEL_DST bits, respectively. Writing a ‘0’
activates the hardware handshaking interface to handle source/destination requests
for the specific channel. Writing a ‘1’ activates the software handshaking interface to
handle source/destination requests.

— ii. If the hardware handshaking interface is activated for the source or destination
peripheral, assign handshaking interface to the source and destination peripheral.
This requires programming the SRC_PER and DEST_PER bits, respectively.

4. After the DMACA selected channel has been programmed, enable the channel by writing
a ‘1’ to the ChEnReg.CH_EN bit. Make sure that bit 0 of the DmaCfgReg register is
enabled.

5. Source and destination request single and burst DMACA transactions to transfer the
block of data (assuming non-memory peripherals). The DMACA acknowledges on com-
pletion of each burst/single transaction and carry out the block transfer.

6. When the block transfer has completed, the DMACA reloads the SARx, DARx and CTLx
registers. Hardware sets the Block Complete interrupt. The DMACA then samples the
row number as shown in Table 17-1 on page 185. If the DMACA is in Row 1, then the
DMA transfer has completed. Hardware sets the transfer complete interrupt and disables
the channel. So you can either respond to the Block Complete or Transfer Complete
interrupts, or poll for the Channel Enable (ChEnReg.CH_EN) bit until it is disabled, to
detect when the transfer is complete. If the DMACA is not in Row 1, the next step is
performed.

7. The DMA transfer proceeds as follows:

a. Ifinterrupts are enabled (CTLx.INT_EN = 1) and the block complete interrupt is un-
masked (MaskBlock[x] = 1’b1, where x is the channel number) hardware sets the
block complete interrupt when the block transfer has completed. It then stalls until the
block complete interrupt is cleared by software. If the next block is to be the last block
in the DMA transfer, then the block complete ISR (interrupt service routine) should

Alm L 193

32003M-AVR32-09/09 I ©

clear the reload bits in the CFGx.RELOAD_SR and CFGx.RELOAD_DS registers.
This put the DMACA into Row 1 as shown in Table 17-1 on page 185. If the next
block is not the last block in the DMA transfer, then the reload bits should remain
enabled to keep the DMACA in Row 4.

b. If interrupts are disabled (CTLx.INT_EN = 0) or the block complete interrupt is
masked (MaskBlock[x] = 1’b0, where x is the channel number), then hardware does
not stall until it detects a write to the block complete interrupt clear register but starts
the next block transfer immediately. In this case software must clear the reload bits in
the CFGx.RELOAD_SR and CFGx.RELOAD_DS registers to put the DMACA into
ROW 1 of Table 17-1 on page 185 before the last block of the DMA transfer has com-
pleted. The transfer is similar to that shown in Figure 17-11 on page 194. The DMA
transfer flow is shown in Figure 17-12 on page 195.

Figure 17-11. Multi-Block DMA Transfer with Source and Destination Address Auto-reloaded

Address of Address of
Source Layer Destination Layer

BlockO

Block1
Block2

SAR —»

<+— DAR

BIockN

Source Blocks Destination Blocks

A ||'|E|,® 194

32003M-AVR32-09/09

17.10.1.4

32003M-AVR32-09/09

Figure 17-12. DMA Transfer Flow for Source and Destination Address Auto-reloaded

Block Complete interrupt
generated here

DMAC transfer Complete
interrupt generated here

Channel Enabled by
software

:

Block Transfer

’

Reload SARx, DARx, CTLx

yes

——y

Is DMAC in Row1 of

!

Channel Disabled by
hardware

DMAC State Machine Table?

CTLX.INT_EN=1
&&
MASKBLOCK[x]=1?

Stall until block complete

interrupt cleared by software

Muilti-block Transfer with Source Address Auto-reloaded and Linked List Destination Address (Row?7)

1. Read the Channel Enable register to choose a free (disabled) channel.

2. Set up the chain of linked list items (otherwise known as block descriptors) in memory.
Write the control information in the LLI.CTLx register location of the block descriptor for
each LLI in memory for channel x. For example, in the register you can program the

following:

a. Set up the transfer type (memory or non-memory peripheral for source and destina-
tion) and flow control peripheral by programming the TT_FC of the CTLx register.

b. Set up the transfer characteristics, such as:

. Transfer width for the source in the SRC_TR_WIDTH field.

— ii. Transfer width for the destination in the DST_TR_WIDTH field.

— iii. Source master layer in the SMS field where source resides.

— iv. Destination master layer in the DMS field where destination resides.

— v. Incrementing/decrementing or fixed address for source in SINC field.

— vi. Incrementing/decrementing or fixed address for destination DINC field.

ATMEL

Y 5

195

3. Write the starting source address in the SARX register for channel x.

Note: The values in the LLI.SARX register locations of each of the Linked List Items (LLIs) setup up in
memory, although fetched during a LLI fetch, are not used.

4. Write the channel configuration information into the CFGx register for channel x.

a. Designate the handshaking interface type (hardware or software) for the source and
destination peripherals. This is not required for memory. This step requires program-
ming the HS_SEL_SRC/HS_SEL_DST bits, respectively. Writing a ‘0’ activates the
hardware handshaking interface to handle source/destination requests for the spe-
cific channel. Writing a ‘1’ activates the software handshaking interface
source/destination requests.

b. If the hardware handshaking interface is activated for the source or destination
peripheral, assign handshaking interface to the source and destination peripheral.
This requires programming the SRC_PER and DEST_PER bits, respectively.

5. Make sure that the LLI.CTLx register locations of all LLIs in memory (except the last) are
set as shown in Row 7 of Table 17-1 on page 185 while the LLI.CTLx register of the last
Linked List item must be set as described in Row 1 or Row 5 of Table 17-1 on page 185.
Figure 17-7 on page 184 shows a Linked List example with two list items.

6. Make sure that the LLI.LLPx register locations of all LLIs in memory (except the last) are
non-zero and point to the next Linked List Iltem.

7. Make sure that the LLI.DARX register location of all LLIs in memory point to the start des-
tination block address proceeding that LLI fetch.

8. Make sure that the LLI.CTLx.DONE field of the LLI.CTLx register locations of all LLIs in
memory is cleared.

9. Clear any pending interrupts on the channel from the previous DMA transfer by writing to
the Interrupt Clear registers: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran, ClearErr.
Reading the Interrupt Raw Status and Interrupt Status registers confirms that all inter-
rupts have been cleared.

10. Program the CTLx, CFGx registers according to Row 7 as shown in Table 17-1 on page
185.

11. Program the LLPx register with LLPx(0), the pointer to the first Linked List item.

12. Finally, enable the channel by writing a ‘1’ to the ChEnReg.CH_EN bit. The transfer is
performed. Make sure that bit O of the DmaCfgReg register is enabled.

13. The DMACA fetches the first LLI from the location pointed to by LLPx(0).

Note: The LLI.SARXx, LLI.DARX, LLI. LLPx and LLI.CTLx registers are fetched. The LLI.SARXx register
although fetched is not used.
14. Source and destination request single and burst DMACA transactions to transfer the
block of data (assuming non-memory peripherals). DMACA acknowledges at the comple-
tion of every transaction (burst and single) in the block and carry out the block transfer.

15. Table 17-1 on page 185The DMACA reloads the SARXx register from the initial value.
Hardware sets the block complete interrupt. The DMACA samples the row number as
shown in Table 17-1 on page 185. If the DMACA is in Row 1 or 5, then the DMA transfer
has completed. Hardware sets the transfer complete interrupt and disables the channel.
You can either respond to the Block Complete or Transfer Complete interrupts, or poll for
the Channel Enable (ChEnReg.CH_EN) bit until it is cleared by hardware, to detect when
the transfer is complete. If the DMACA is not in Row 1 or 5 as shown in Table 17-1 on
page 185 the following steps are performed.

16. The DMA transfer proceeds as follows:

a. Ifinterrupts are enabled (CTLx.INT_EN = 1) and the block complete interrupt is un-
masked (MaskBlock[x] = 1’b1, where x is the channel number) hardware sets the
block complete interrupt when the block transfer has completed. It then stalls until the

Alm L 196

32003M-AVR32-09/09 I ©

block complete interrupt is cleared by software. If the next block is to be the last block
in the DMA transfer, then the block complete ISR (interrupt service routine) should
clear the CFGx.RELOAD_SR source reload bit. This puts the DMACA into Row1 as
shown in Table 17-1 on page 185. If the next block is not the last block in the DMA
transfer, then the source reload bit should remain enabled to keep the DMACA in
Row 7 as shown in Table 17-1 on page 185.

b. If interrupts are disabled (CTLx.INT_EN = 0) or the block complete interrupt is
masked (MaskBlock[x] = 1’b0, where x is the channel number) then hardware does
not stall until it detects a write to the block complete interrupt clear register but starts
the next block transfer immediately. In this case, software must clear the source
reload bit, CFGx.RELOAD_SR, to put the device into Row 1 of Table 17-1 on page
185 before the last block of the DMA transfer has completed.

17. The DMACA fetches the next LLI from memory location pointed to by the current LLPx
register, and automatically reprograms the DARx, CTLx and LLPx channel registers.
Note that the SARXx is not re-programmed as the reloaded value is used for the next DMA
block transfer. If the next block is the last block of the DMA transfer then the CTLx and
LLPx registers just fetched from the LLI should match Row 1 or Row 5 of Table 17-1 on
page 185. The DMA transfer might look like that shown in Figure 17-13 on page 197.

Figure 17-13. Multi-Block DMA Transfer with Source Address Auto-reloaded and Linked List

Address of A_ddrgss of
Source Layer Destination Layer

BlockQ

DAR(0)_,

Block1

DAR(1)_,
SAR— Block2
T
1
1
BlockN
DAR(N)_,
Source Blocks Destination Blocks

Destination Address

The DMA Transfer flow is shown in Figure 17-14 on page 198.

Alm L 197

32003M-AVR32-09/09 I ©

Figure 17-14. DMA Transfer Flow for Source Address Auto-reloaded and Linked List Destina-
tion Address

Channel Enabled by
software

|

LLI Fetch

!

Hardware reprograms
DARx, CTLx, LLPx

|

DMAC block transfer

|

Source/destination status fetch

|

Reload SARx

Block Complete interrupt _
generated here

Is DMAC in
Row1 or Row5 of
DMAC State Machine Table?

DMAC Transfer Complete yes

interrupt generated here

Channel Disabled by
hardware

CTLx.INT_EN=1
&&
MASKBLOCK[X]=1 ?

Stall until block interrupt
Cleared by hardware

AIMEL 198

32003M-AVR32-09/09 I ©

17.10.1.5 Multi-block Transfer with Source Address Auto-reloaded and Contiguous Destination Address (Row 3)

1. Read the Channel Enable register to choose a free (disabled) channel.

2. Clear any pending interrupts on the channel from the previous DMA transfer by writing a
‘1’ to the Interrupt Clear registers: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran,
ClearErr. Reading the Interrupt Raw Status and Interrupt Status registers confirms that
all interrupts have been cleared.

3. Program the following channel registers:
a. Write the starting source address in the SARX register for channel x.
b. Write the starting destination address in the DARX register for channel x.

c. Program CTLx and CFGx according to Row 3 as shown in Table 17-1 on page 185.
Program the LLPx register with ‘0’.

d. Write the control information for the DMA transfer in the CTLx register for channel x.
For example, in this register, you can program the following:
— i. Set up the transfer type (memory or non-memory peripheral for source and
destination) and flow control device by programming the TT_FC of the CTLx register.

— ii. Set up the transfer characteristics, such as:
— Transfer width for the source in the SRC_TR_WIDTH field.
— Transfer width for the destination in the DST_TR_WIDTH field.
— Source master layer in the SMS field where source resides.
— Destination master layer in the DMS field where destination resides.
— Incrementing/decrementing or fixed address for source in SINC field.
— Incrementing/decrementing or fixed address for destination in DINC field.
e. Write the channel configuration information into the CFGx register for channel x.
— i. Designate the handshaking interface type (hardware or software) for the source and
destination peripherals. This is not required for memory. This step requires
programming the HS_SEL_SRC/HS_SEL_DST bits, respectively. Writing a ‘0’
activates the hardware handshaking interface to handle source/destination requests

for the specific channel. Writing a ‘1’ activates the software handshaking interface to
handle source/destination requests.

— ii. If the hardware handshaking interface is activated for the source or destination
peripheral, assign handshaking interface to the source and destination peripheral.
This requires programming the SRC_PER and DEST_PER bits, respectively.

4. After the DMACA channel has been programmed, enable the channel by writing a ‘1’ to
the ChEnReg.CH_EN bit. Make sure that bit 0 of the DmaCfgReg register is enabled.

5. Source and destination request single and burst DMACA transactions to transfer the
block of data (assuming non-memory peripherals). The DMACA acknowledges at the
completion of every transaction (burst and single) in the block and carries out the block
transfer.

6. When the block transfer has completed, the DMACA reloads the SARXx register. The
DARXx register remains unchanged. Hardware sets the block complete interrupt. The
DMACA then samples the row number as shown in Table 17-1 on page 185. If the
DMACA is in Row 1, then the DMA transfer has completed. Hardware sets the transfer
complete interrupt and disables the channel. So you can either respond to the Block
Complete or Transfer Complete interrupts, or poll for the Channel Enable (ChEn-

Alm L 199

32003M-AVR32-09/09 I ©

Reg.CH_EN) bit until it is cleared by hardware, to detect when the transfer is complete. If
the DMACA is not in Row 1, the next step is performed.

7. The DMA transfer proceeds as follows:

a.

If interrupts are enabled (CTLx.INT_EN = 1) and the block complete interrupt is un-
masked (MaskBlock[x] = 1’b1, where x is the channel number) hardware sets the
block complete interrupt when the block transfer has completed. It then stalls until the
block complete interrupt is cleared by software. If the next block is to be the last block
in the DMA transfer, then the block complete ISR (interrupt service routine) should
clear the source reload bit, CFGx.RELOAD_SR. This puts the DMACA into Row1 as
shown in Table 17-1 on page 185. If the next block is not the last block in the DMA
transfer then the source reload bit should remain enabled to keep the DMACA in
Row3 as shown in Table 17-1 on page 185.

If interrupts are disabled (CTLx.INT_EN = 0) or the block complete interrupt is
masked (MaskBlock[x] = 1’b0, where x is the channel number) then hardware does
not stall until it detects a write to the block complete interrupt clear register but starts
the next block transfer immediately. In this case software must clear the source
reload bit, CFGx.RELOAD_SR, to put the device into ROW 1 of Table 17-1 on page
185 before the last block of the DMA transfer has completed.

The transfer is similar to that shown in Figure 17-15 on page 200.

The DMA Transfer flow is shown in Figure 17-16 on page 201.

Figure 17-15. Multi-block Transfer with Source Address Auto-reloaded and Contiguous Desti-

32003M-AVR32-09/09

nation Address

Address of Addr.ess of
Source Layer Destination Layer
Block2
«— DAR(2)
Block1
+«— DAR(1)
BlockO
SAR
DAR(0)
Source Blocks Destination Blocks

ATMEL

Y 5

200

Figure 17-16. DMA Transfer for Source Address Auto-reloaded and Contiguous Destination
Address

Channel Enabled by
software

l

Block Transfer «—

l

Reload SARx, CTLx

Block Complete interrupt E— l
generated here

DMAC Transfer Complete
interrupt generated here yes

L

Is DMAC in Row1 of
DMAC State Machine Table?

Channel Disabled by
hardware

CTLX.INT_EN=1
&&
MASKBLOCK][x]=1?

l yes

Stall until Block Complete
interrupt cleared by software

17.10.1.6 Multi-block DMA Transfer with Linked List for Source and Contiguous Destination Address (Row 8)

1. Read the Channel Enable register to choose a free (disabled) channel.

2. Set up the linked list in memory. Write the control information in the LLI. CTLx register
location of the block descriptor for each LLI in memory for channel x. For example, in the
register, you can program the following:

a. Set up the transfer type (memory or non-memory peripheral for source and destina-
tion) and flow control device by programming the TT_FC of the CTLx register.

b. Set up the transfer characteristics, such as:

. Transfer width for the source in the SRC_TR_WIDTH field.

— ii. Transfer width for the destination in the DST_TR_WIDTH field.

— iii. Source master layer in the SMS field where source resides.

— iv. Destination master layer in the DMS field where destination resides.
— v. Incrementing/decrementing or fixed address for source in SINC field.

Alm L 201

Y 5

32003M-AVR32-09/09

— vi. Incrementing/decrementing or fixed address for destination DINC field.

3. Write the starting destination address in the DARX register for channel x.

Note: The values in the LLI.DARX register location of each Linked List Iltem (LLI) in memory, although
fetched during an LLI fetch, are not used.

4. Write the channel configuration information into the CFGx register for channel x.

a. Designate the handshaking interface type (hardware or software) for the source and
destination peripherals. This is not required for memory. This step requires program-
ming the HS_SEL_SRC/HS_SEL_DST bits, respectively. Writing a ‘0’ activates the
hardware handshaking interface to handle source/destination requests for the spe-
cific channel. Writing a ‘1’ activates the software handshaking interface to handle
source/destination requests.

b. If the hardware handshaking interface is activated for the source or destination
peripheral, assign handshaking interface to the source and destination peripherals.
This requires programming the SRC_PER and DEST_PER bits, respectively.

5. Make sure that all LLI.CTLx register locations of the LLI (except the last) are set as
shown in Row 8 of Table 17-1 on page 185, while the LLI.CTLx register of the last Linked
List item must be set as described in Row 1 or Row 5 of Table 17-1 on page 185. Figure
17-7 on page 184 shows a Linked List example with two list items.

6. Make sure that the LLI.LLPx register locations of all LLIs in memory (except the last) are
non-zero and point to the next Linked List ltem.

7. Make sure that the LLI.SARX register location of all LLIs in memory point to the start
source block address proceeding that LLI fetch.

8. Make sure that the LLI.CTLx.DONE field of the LLI.CTLx register locations of all LLIs in
memory is cleared.

9. Clear any pending interrupts on the channel from the previous DMA transfer by writing a
‘1’ to the Interrupt Clear registers: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran,
ClearErr. Reading the Interrupt Raw Status and Interrupt Status registers confirms that
all interrupts have been cleared.

10. Program the CTLx, CFGx registers according to Row 8 as shown in Table 17-1 on page
185

11. Program the LLPx register with LLPx(0), the pointer to the first Linked List item.

12. Finally, enable the channel by writing a ‘1’ to the ChEnReg.CH_EN bit. The transfer is
performed. Make sure that bit 0 of the DmaCfgReg register is enabled.

13. The DMACA fetches the first LLI from the location pointed to by LLPx(0).

Note: The LLL.SARX, LLI.DARX, LLI.LLPx and LLI.CTLx registers are fetched. The LLI.DARXx register
location of the LLI although fetched is not used. The DARX register in the DMACA remains
unchanged.

14. Source and destination requests single and burst DMACA transactions to transfer the
block of data (assuming non-memory peripherals). The DMACA acknowledges at the
completion of every transaction (burst and single) in the block and carry out the block
transfer.

Note:

15. The DMACA does not wait for the block interrupt to be cleared, but continues and fetches
the next LLI from the memory location pointed to by current LLPx register and automati-
cally reprograms the SARx, CTLx and LLPx channel registers. The DARX register is left
unchanged. The DMA transfer continues until the DMACA samples the CTLx and LLPx
registers at the end of a block transfer match that described in Row 1 or Row 5 of Table
17-1 on page 185. The DMACA then knows that the previous block transferred was the
last block in the DMA transfer.

Alm L 202

32003M-AVR32-09/09 I ©

The DMACA transfer might look like that shown in Figure 17-17 on page 203 Note that the des-
tination address is decrementing.

Figure 17-17. DMA Transfer with Linked List Source Address and Contiguous Destination

Address
Address of Address of
Source Layer Destination Layer
Block 2
SAR(2) —> \ Block 2
< DAR(2)
Block 1 > | Block 1
SAR(1) — «— DAR(1)
/ Block 0
Block 0 < DAR(0)
SAR(0) —
Source Blocks Destination Blocks

The DMA transfer flow is shown in Figure 17-19 on page 204.

Figure 17-18.

Alm L 203

Y 5

32003M-AVR32-09/09

Figure 17-19. DMA Transfer Flow for Source Address Auto-reloaded and Contiguous Destination Address

Channel Enabled by
software

LLI Fetch

A

Hardware reprograms
SARXx, CTLx, LLPx

DMAC block transfer

Source/destination
status fetch

Block Complete interrupt —— l
generated here

Is DMAC in
Row 1 of Table 4 ?

no

DMAC Transfer Complete
interrupt generated here

Channel Disabled by
hardware

17.11 Disabling a Channel Prior to Transfer Completion

Under normal operation, software enables a channel by writing a ‘1’ to the Channel Enable Reg-
ister, ChEnReg.CH_EN, and hardware disables a channel on transfer completion by clearing the
ChEnReg.CH_EN register bit.

The recommended way for software to disable a channel without losing data is to use the
CH_SUSP bit in conjunction with the FIFO_EMPTY bit in the Channel Configuration Register
(CFGx) register.

Alm L 204

32003M-AVR32-09/09 I ©

1. If software wishes to disable a channel prior to the DMA transfer completion, then it can

set the CFGx.CH_SUSP bit to tell the DMACA to halt all transfers from the source periph-

eral. Therefore, the channel FIFO receives no new data.
2. Software can now poll the CFGx.FIFO_EMPTY bit until it indicates that the channel FIFO

is empty.
3. The ChEnReg.CH_EN bit can then be cleared by software once the channel FIFO is

empty.
When CTLx.SRC_TR_WIDTH is less than CTLx.DST_TR_WIDTH and the CFGx.CH_SUSP bit
is high, the CFGx.FIFO_EMPTY is asserted once the contents of the FIFO do not permit a single
word of CTLx.DST_TR_WIDTH to be formed. However, there may still be data in the channel
FIFO but not enough to form a single transfer of CTLx.DST_TR_WIDTH width. In this configura-
tion, once the channel is disabled, the remaining data in the channel FIFO are not transferred to
the destination peripheral. It is permitted to remove the channel from the suspension state by
writing a ‘0’ to the CFGx.CH_SUSP register. The DMA transfer completes in the normal manner.

Note: If a channel is disabled by software, an active single or burst transaction is not guaranteed to
receive an acknowledgement.

17.11.1 Abnormal Transfer Termination

32003M-AVR32-09/09

A DMACA DMA transfer may be terminated abruptly by software by clearing the channel enable
bit, ChEnReg.CH_EN. This does not mean that the channel is disabled immediately after the
ChEnReg.CH_EN bit is cleared over the HSB slave interface. Consider this as a request to dis-
able the channel. The ChEnReg.CH_EN must be polled and then it must be confirmed that the
channel is disabled by reading back 0. A case where the channel is not be disabled after a chan-
nel disable request is where either the source or destination has received a split or retry
response. The DMACA must keep re-attempting the transfer to the system HADDR that origi-
nally received the split or retry response until an OKAY response is returned. To do otherwise is
an System Bus protocol violation.

Software may terminate all channels abruptly by clearing the global enable bit in the DMACA
Configuration Register (DmaCfgReg[0]). Again, this does not mean that all channels are dis-
abled immediately after the DmaCfgRegl[0] is cleared over the HSB slave interface. Consider
this as a request to disable all channels. The ChEnReg must be polled and then it must be con-
firmed that all channels are disabled by reading back ‘0’.

Note: If the channel enable bit is cleared while there is data in the channel FIFO, this data is not sent to
the destination peripheral and is not present when the channel is re-enabled. For read sensitive
source peripherals such as a source FIFO this data is therefore lost. When the source is not a
read sensitive device (i.e., memory), disabling a channel without waiting for the channel FIFO to
empty may be acceptable as the data is available from the source peripheral upon request and is
not lost.

Note: If a channel is disabled by software, an active single or burst transaction is not guaranteed to
receive an acknowledgement.

Alm L 205

Y 5

17.12 User Interface

Table 17-2. DMA Controller Memory Map
Offset Register Register Name Access Reset Value
0x000 Channel 0 Source Address Register SARO Read/Write 0x00000000
0x008 Channel 0 Destination Address Register DARO Read/Write 0x00000000
0x010 Channel 0 Linked List Pointer Register LLPO Read/Write 0x00000000
0x018 Channel 0 Control Register Low CTLOL Read/Write 0x00304801
0x01C Channel 0 Control Register High CTLOH Read/Write 0x00000002
0x040 Channel 0 Configuration Register Low CFGoOL Read/Write 0x00000c00
0x044 Channel 0 Configuration Register High CFGOH Read/Write 0x00000004
0x048 Channel 0 Source Gather Register SGRO Read/Write 0x00000000
0x050 Channel 0 Destination Scatter Register DSRO Read/Write 0x00000000
0x058 Channel 1 Source Address Register SAR1 Read/Write 0x00000000
0x060 Channel 1 Destination Address Register DAR1 Read/Write 0x00000000
0x068 Channel 1 Linked List Pointer Register LLP1 Read/Write 0x00000000
0x070 Channel 1 Control Register Low CTL1L Read/Write 0x00304801
0x074 Channel 1 Control Register High CTL1H Read/Write 0x00000002
0x098 Channel 1 Configuration Register Low CFGI1L Read/Write 0x00000c20
0x09C Channel 1 Configuration Register High CFG1H Read/Write 0x00000004
0x0AO0 Channel 1Source Gather Register SGR1 Read/Write 0x00000000
0x0A8 Channel 1 Destination Scatter Register DSR1 Read/Write 0x00000000
0x0BO Channel 2 Source Address Register SAR2 Read/Write 0x00000000
0x0B8 Channel 2 Destination Address Register DAR2 Read/Write 0x00000000
0x0CO0 Channel 2 Linked List Pointer Register LLP2 Read/Write 0x00000000
0x0C8 Channel 2 Control Register Low CTL2L Read/Write 0x00304801
0x0CC Channel 2 Control Register High CTL2H Read/Write 0x00000002
0x0FO0 Channel 2 Configuration Register Low CFG2L Read/Write 0x00000c40
0x0F4 Channel 2 Configuration Register High CFG2H Read/Write 0x00000004
O0x0F8 Channel 2 Source Gather Register SGR2 Read/Write 0x00000000
0x100 Channel 2 Destination Scatter Register DSR2 Read/Write 0x00000000
0x2C0 Raw Status for IntTfr Interrupt RawTfr Read-only 0x00000000
0x2C8 Raw Status for IntBlock Interrupt RawBlock Read-only 0x00000000
0x2D0 Raw Status for IntSrcTran Interrupt RawSrcTran Read-only 0x00000000
0x2D8 Raw Status for IntDstTran Interrupt RawDstTran Read-only 0x00000000
O0x2EO0 Raw Status for IntErr Interrupt RawErr Read-only 0x00000000
0x2E8 Status for IntTfr Interrupt StatusTfr Read-only 0x00000000
0x2F0 Status for IntBlock Interrupt StatusBlock Read-only 0x00000000
0x2F8 Status for IntSrcTran Interrupt StatusSrcTran Read-only 0x00000000
ATMEL 206

32003M-AVR32-09/09

Table 17-2. DMA Controller Memory Map (Continued)
Offset Register Register Name Access Reset Value
0x300 Status for IntDstTran Interrupt StatusDstTran Read-only 0x00000000
0x308 Status for IntErr Interrupt StatusErr Read-only 0x00000000
0x310 Mask for IntTfr Interrupt MaskTfr Read/Write 0x00000000
0x318 Mask for IntBlock Interrupt MaskBlock Read/Write 0x00000000
0x320 Mask for IntSrcTran Interrupt MaskSrcTran Read/Write 0x00000000
0x328 Mask for IntDstTran Interrupt MaskDstTran Read/Write 0x00000000
0x330 Mask for IntErr Interrupt MaskErr Read/Write 0x00000000
0x338 Clear for IntTfr Interrupt ClearTfr Write-only 0x00000000
0x340 Clear for IntBlock Interrupt ClearBlock Write-only 0x00000000
0x348 Clear for IntSrcTran Interrupt ClearSrcTran Write-only 0x00000000
0x350 Clear for IntDstTran Interrupt ClearDstTran Write-only 0x00000000
0x358 Clear for IntErr Interrupt ClearErr Write-only 0x00000000
0x360 Status for each interrupt type Statusint Read-only 0x00000000
0x368 Source Software Transaction Request Register ReqSrcReg Read/Write 0x00000000
0x370 Destination Software Transaction Request Register ReqDstReg Read/Write 0x00000000
0x378 Single Source Transaction Request Register SglReqSrcReg Read/Write 0x00000000
0x380 Single Destination Transaction Request Register SglReqDstReg Read/Write 0x00000000
0x388 Last Source Transaction Request Register LstSrcReg Read/Write 0x00000000
0x390 Last Destination Transaction Request Register LstDstReg Read/Write 0x00000000
0x398 DMA Configuration Register DmaCfgReg Read/Write 0x00000000
0x3A0 DMA Channel Enable Register ChEnReg Read/Write 0x00000000
0x3F8 DMA Component ID Register Low DmaCompldRegL Read-only 0x44571110
0x3FC DMA Component ID Register High DmaCompldRegH Read-only 0x3230362A
ATMEL 207

32003M-AVR32-09/09

17.12.1 Channel x Source Address Register

Name: SARx

Access Type: Read/Write

Offset: 0x000 + [x * 0x58]

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ SADD[31:24] \
23 22 21 20 19 18 17 16

| SADD[23:16] |
15 14 13 12 11 10 9 8

| SADD[15:8] |
7 6 5 4 3 2 1 0

| SADD[7:0] |

e SADD: Source Address of DMA transfer

The starting System Bus source address is programmed by software before the DMA channel is enabled or by a LLI update
before the start of the DMA transfer. As the DMA transfer is in progress, this register is updated to reflect the source
address of the current System Bus transfer.

Updated after each source System Bus transfer. The SINC field in the CTLx register determines whether the address incre-
ments, decrements, or is left unchanged on every source System Bus transfer throughout the block transfer.

Alm L 208

32003M-AVR32-09/09 I ©

17.12.2 Channel x Destination Address Register

Name: DARXx

Access Type: Read/Write

Offset: 0x008 + [x * 0x58]

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ DADD[31:24] \
23 22 21 20 19 18 17 16

| DADDI[23:16] |
15 14 13 12 11 10 9 8

| DADDI[15:8] |
7 6 5 4 3 2 1 0

‘ DADDJ[7:0] \

e DADD: Destination Address of DMA transfer

The starting System Bus destination address is programmed by software before the DMA channel is enabled or by a LLI
update before the start of the DMA transfer. As the DMA transfer is in progress, this register is updated to reflect the desti-
nation address of the current System Bus transfer.

Updated after each destination System Bus transfer. The DINC field in the CTLx register determines whether the address
increments, decrements or is left unchanged on every destination System Bus transfer throughout the block transfer.

Alm L 209

32003M-AVR32-09/09 I ©

17.12.3 Linked List Pointer Register for Channel x

Name: LLPx

Access Type: Read/Write

Offset: 0x010 + [x * 0x58]

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ LOC[29:22] \
23 22 21 20 19 18 17 16

‘ LOC[21:14] ‘
15 14 13 12 11 10 9 8

| LOC[13:6] |
7 6 5 4 3 2 1 0

| LOC[5:0] LMS |

e LOC: Address of the next LLI
Starting address in memory of next LLI if block chaining is enabled.

The user need to program this register to point to the first Linked List Item (LLI) in memory prior to enabling the channel if
block chaining is enabled.

The LLP register has two functions:
The logical result of the equation LLP.LOC != 0 is used to set up the type of DMA transfer (single or multi-block).

If LLP.LOC is set to 0x0, then transfers using linked lists are NOT enabled. This register must be programmed prior to
enabling the channel in order to set up the transfer type.

It (LLP.LOC != 0) contains the pointer to the next Linked Listed Item for block chaining using linked lists.

The LLPx register is also used to point to the address where write back of the control and source/destination status infor-
mation occurs after block completion.

¢ LMS: List Master Select
Identifies the High speed bus interface for the device that stores the next linked list item:

Table 17-3. List Master Select

LMS HSB Master
0 HSB master 1
1 HSB master 2
Other Reserved

Alm L 210

32003M-AVR32-09/09 I ©

17.12.4 Control Register for Channel x Low

Name: CTLxL
Access Type: Read/Write
Offset: 0x018 + [x * 0x58]
Reset Value: 0x00304801
31 30 29 28 27 26 25 24
LLP_SRC_E LLP_DST_E SMS DMS[1]
N N
23 22 21 20 19 18 17 16
DST_GATHE | SRC_GATHE | SRC_MSIZE
DMS[0] TT_FC REN R_EN 2l
15 14 13 12 11 10 9 8
‘ SRC_MSIZE[1:0] DEST_MSIZE SINC ‘ DINCI[1] ‘
7 6 5 4 3 2 1 0
‘ DINCIO0] SRC_TR_WIDTH DST_TR_WIDTH ‘ INT_EN ‘

This register contains fields that control the DMA transfer. The CTLxL register is part of the block descriptor (linked list item)
when block chaining is enabled. It can be varied on a block-by-block basis within a DMA transfer when block chaining is
enabled.

e LLP_SRC_EN

Block chaining is only enabled on the source side if the LLP_SRC_EN field is high and LLPx.LOC is non-zero.

e LLP_DST EN
Block chaining is only enabled on the destination side if the LLP_DST_EN field is high and LLPx.LOC is non-zero.

e SMS: Source Master Select
Identifies the Master Interface layer where the source device (peripheral or memory) is accessed from

Table 17-4. Source Master Select
SMS HSB Master
0 HSB master 1
1 HSB master 2
Other Reserved

32003M-AVR32-09/09

ATMEL

Y 5

211

e DMS: Destination Master Select
Identifies the Master Interface layer where the destination device (peripheral or memory) resides

Table 17-5. Destination Master Select

DMS HSB Master
0 HSB master 1
1 HSB master 2
Other Reserved

e TT_FC: Transfer Type and Flow Control
The four following transfer types are supported:

* Memory to Memory, Memory to Peripheral, Peripheral to Memory and Peripheral to Peripheral.

The DMACA is always the Flow Controller.

TT_FC Transfer Type Flow Controller
000 Memory to Memory DMACA

001 Memory to Peripheral DMACA

010 Peripheral to Memory DMACA

011 Peripheral to Peripheral DMACA

Other Reserved Reserved

e DST_SCATTER_EN: Destination Scatter Enable
0 = Scatter disabled

1 = Scatter enabled

Scatter on the destination side is applicable only when the CTLx.DINC bit indicates an incrementing or decrementing
address control.

Important note: This bit is only implemented for channel 1, not for channels 0 and 2.

e SRC_GATHER_EN: Source Gather Enable
0 = Gather disabled

1 = Gather enabled

Gather on the source side is applicable only when the CTLx.SINC bit indicates an incrementing or decrementing address
control.

Important note: This bit is only implemented for channel 1, not for channels 0 and 2.
e SRC_MSIZE: Source Burst Transaction Length
Number of data items, each of width CTLx.SRC_TR_WIDTH, to be read from the source every time a source burst transac-
tion request is made from either the corresponding hardware or software handshaking interface.

SRC_MSIZE Size (items number)
0 1

1 4

2 8

Other Reserved

AIMEL 212

32003M-AVR32-09/09 I ©

e DST_MSIZE: Destination Burst Transaction Length

Number of data items, each of width CTLx.DST_TR_WIDTH, to be written to the destination every time a destination burst

transaction request is made from either the corresponding hardware or software handshaking interface.

DST_MSIZE Size (items number)
0 1

1 4

2 8

Other Reserved

¢ SINC: Source Address Increment
Indicates whether to increment or decrement the source address on every source System Bus transfer. If your device is
fetching data from a source peripheral FIFO with a fixed address, then set this field to “No change”

Source Address
SINC Increment
0 Increment
1 Decrement
Other No change

¢ DINC: Destination Address Increment
Indicates whether to increment or decrement the destination address on every destination System Bus transfer. If your
device is writing data to a destination peripheral FIFO with a fixed address, then set this field to “No change”

Destination Address
DINC Increment
0 Increment
1 Decrement
Other No change

e SRT_TR_WIDTH: Source Transfer Width
e DSC_TR_WIDTH: Destination Transfer Width

SRC_TR_WIDTH/DST_TR_WIDTH Size (bits)
0 8

1 16

2 32

Other Reserved

¢ INT_EN: Interrupt Enable Bit
If set, then all five interrupt generating sources are enabled.

AIMEL 213

32003M-AVR32-09/09 I ©

17.12.5 Control Register for Channel x High

Name: CTLxH

Access Type: Read/Write

Offset: 0x01C + [x * 0x58]

Reset Value: 0x00000002
31 30 29 28 27 26 25 24

. - ! - r - r - r - ;- ;- §; - |
23 22 21 20 19 18 17 16

. - r - -7+ - {r -’ - [-} - |
15 14 13 12 11 10 9 8

| - | . | - | DONE | BLOCK_TS[11:8] |
7 6 5 4 3 2 1 0

‘ BLOCK_TS[7:0] ‘

e DONE: Done Bit
Software can poll this bit to see when a block transfer is complete

¢ BLOCK_TS: Block Transfer Size
When the DMACA is flow controller, this field is written by the user before the channel is enabled to indicate the block size.

The number programmed into BLOCK_TS indicates the total number of single transactions to perform for every block
transfer, unless the transfer is already in progress, in which case the value of BLOCK_TS indicates the number of single
transactions that have been performed so far.

The width of the single transaction is determined by CTLx.SRC_TR_WIDTH.

Alm L 214

32003M-AVR32-09/09 I ©

17.12.6 Configuration Register for Channel x Low

Name: CFGxL
Access Type: Read/Write
Offset: 0x040 + [x * 0x58]

¢ Reset Value: 0x00000C00 + [x * 0x20]

31 30 29 28 27 26 25 24
RELOAD_D RELOAD_S - - - - - -
ST RC
23 22 21 20 19 18 17 16
- - - - SRC_HS_P | DST_HS_PO - -
oL L
15 14 13 12 11 10 9 8
HS_SEL_SR | HS_SEL_DS | FIFO_EMPT CH_SUSP
C T Y
7 6 5 4 3 2 1 0
CH_PRIOR - - - - -

e RELOAD_DST: Automatic Destination Reload

The DARX register can be automatically reloaded from its initial value at the end of every block for multi-block transfers. A
new block transfer is then initiated.

¢ RELOAD_SRC: Automatic Source Reload

The SARX register can be automatically reloaded from its initial value at the end of every block for multi-block transfers. A
new block transfer is then initiated.

e SRC_HS_POL: Source Handshaking Interface Polarity
0 = Active high
1 = Active low

e DST_HS_POL: Destination Handshaking Interface Polarity
0 = Active high
1 = Active low
e HS_SEL_SRC: Source Software or Hardware Handshaking Select

This register selects which of the handshaking interfaces, hardware or software, is active for source requests on this
channel.

0 = Hardware handshaking interface. Software-initiated transaction requests are ignored.
1 = Software handshaking interface. Hardware-initiated transaction requests are ignored.

If the source peripheral is memory, then this bit is ignored.

e HS_SEL_DST: Destination Software or Hardware Handshaking Select
This register selects which of the handshaking interfaces, hardware or software, is active for destination requests on this

channel.
ATMEL 215

Y 5

32003M-AVR32-09/09

0 = Hardware handshaking interface. Software-initiated transaction requests are ignored.
1 = Software handshaking interface. Hardware Initiated transaction requests are ignored.

If the destination peripheral is memory, then this bit is ignored.

e FIFO_EMPTY
Indicates if there is data left in the channel's FIFO. Can be used in conjunction with CFGx.CH_SUSP to cleanly disable a
channel.

1 = Channel's FIFO empty

0 = Channel's FIFO not empty
e CH_SUSP: Channel Suspend
Suspends all DMA data transfers from the source until this bit is cleared. There is no guarantee that the current transaction
will complete. Can also be used in conjunction with CFGx.FIFO_EMPTY to cleanly disable a channel without losing any
data.

0 = Not Suspended.
1 = Suspend. Suspend DMA transfer from the source.
e CH_PRIOR: Channel priority
A priority of 7 is the highest priority, and 0 is the lowest. This field must be programmed within the following range [0, x-1].

A programmed value outside this range causes erroneous behavior.

AIMEL 216

32003M-AVR32-09/09 I ©

17.12.7 Configuration Register for Channel x High

Name: CFGxH

Access Type: Read/Write

Offset: 0x044 + [x * 0x58]

Reset Value: 0x00000004
31 30 29 28 27 26 25 24

. - - r - r - r - ;- ;- §; - |
23 22 21 20 19 18 17 16

. - r - -1+ -{r - °rr - [- [- |
15 14 13 12 11 10 9 8

| i | DEST_PER | SRC_PER[3:1] |
7 6 5 4 3 2 1 0

‘ SRC_PER[0] ‘ - - PROTCTL FIFO_MODE FCMODE ‘

e DEST_PER: Destination Hardware Handshaking Interface

Assigns a hardware handshaking interface (0 - DMAH_NUM_HS_INT-1) to the destination of channel x if the
CFGx.HS_SEL_DST field is 0. Otherwise, this field is ignored. The channel can then communicate with the destination
peripheral connected to that interface via the assigned hardware handshaking interface.

For correct DMA operation, only one peripheral (source or destination) should be assigned to the same handshaking
interface.

e SRC_PER: Source Hardware Handshaking Interface

Assigns a hardware handshaking interface (0 - DMAH_NUM_HS_INT-1) to the source of channel x if the
CFGx.HS_SEL_SRC field is 0. Otherwise, this field is ignored. The channel can then communicate with the source periph-
eral connected to that interface via the assigned hardware handshaking interface.

For correct DMACA operation, only one peripheral (source or destination) should be assigned to the same handshaking
interface.
e PROTCTL: Protection Control

Bits used to drive the System Bus HPROTI[3:1] bus. The System Bus Specification recommends that the default value of
HPROT indicates a non-cached, nonbuffered, privileged data access. The reset value is used to indicate such an access.

HPROTIO0] is tied high as all transfers are data accesses as there are no opcode fetches. There is a one-to-one mapping of
these register bits to the HPROT[3:1] master interface signals.

e FIFO_MODE: R/W 0x0 FIFO Mode Select
Determines how much space or data needs to be available in the FIFO before a burst transaction request is serviced.

0 = Space/data available for single System Bus transfer of the specified transfer width.
1 = Space/data available is greater than or equal to half the FIFO depth for destination transfers and less than half the FIFO
depth for source transfers. The exceptions are at the end of a burst transaction request or at the end of a block transfer.

Alm L 217

32003M-AVR32-09/09 I ©

e FCMODE: Flow Control Mode
Determines when source transaction requests are serviced when the Destination Peripheral is the flow controller.

0 = Source transaction requests are serviced when they occur. Data pre-fetching is enabled.

1 = Source transaction requests are not serviced until a destination transaction request occurs. In this mode the amount of data
transferred from the source is limited such that it is guaranteed to be transferred to the destination prior to block termination by
the destination. Data pre-fetching is disabled.

AIMEL 218

Y 5

32003M-AVR32-09/09

17.12.8 Source Gather Register for Channel x

Name: SGRx

Access Type: Read/Write

Offset: 0x048 + [x * 0x58]

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| SGC[11:4] |
23 22 21 20 19 18 17 16

| SGC[3:0] SGI[19:16] |
15 14 13 12 11 10 9 8

| SGI[15:8] |
7 6 5 4 3 2 1 0

| SGI[7:0] |

e SGC: Source Gather Count

Specifies the number of contiguous source transfers of CTLx.SRC_TR_WIDTH between successive gather intervals. This
is defined as a gather boundary.

¢ SGi: Source Gather Interval

Specifies the source address increment/decrement in multiples of CTLx.SRC_TR_WIDTH on a gather boundary when
gather mode is enabled for the source transfer.

Important note: This register is only implemented for channel 1, not for channels 0 and 2.

Alm L 219

32003M-AVR32-09/09 I ©

17.12.9 Destination Scatter Register for Channel x

Name: DSRx

Access Type: Read/Write

Offset: 0x050 + [x * 0x58]

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ DSC[11:4] ‘
23 22 21 20 19 18 17 16

‘ DSC[3:0] DSI[19:16] ‘
15 14 13 12 11 10 9 8

| DSI[15:8] |
7 6 5 4 3 2 1 0

‘ DSI[7:0] ‘

e DSC: Destination Scatter Count

Specifies the number of contiguous destination transfers of CTLx.DST_TR_WIDTH between successive scatter
boundaries.

e DSI: Destination Scatter Interval

Specifies the destination address increment/decrement in multiples of CTLx.DST_TR_WIDTH on a scatter boundary when
scatter mode is enabled for the destination transfer.

Important note: This register is only implemented for channel 1, not for channels 0 and 2.

Alm L 220

32003M-AVR32-09/09 I ©

17.12.10 Interrupt Registers

The following sections describe the registers pertaining to interrupts, their status, and how to clear them. For each channel,
there are five types of interrupt sources:

e IntTfr: DMA Transfer Complete Interrupt
This interrupt is generated on DMA transfer completion to the destination peripheral.

¢ IntBlock: Block Transfer Complete Interrupt
This interrupt is generated on DMA block transfer completion to the destination peripheral.

¢ IntSrcTran: Source Transaction Complete Interrupt
This interrupt is generated after completion of the last System Bus transfer of the requested single/burst transaction from
the handshaking interface on the source side.

If the source for a channel is memory, then that channel never generates a IntSrcTran interrupt and hence the correspond-
ing bit in this field is not set.

¢ IntDstTran: Destination Transaction Complete Interrupt
This interrupt is generated after completion of the last System Bus transfer of the requested single/burst transaction from
the handshaking interface on the destination side.

If the destination for a channel is memory, then that channel never generates the IntDstTran interrupt and hence the corre-
sponding bit in this field is not set.
* IntErr: Error Interrupt

This interrupt is generated when an ERROR response is received from an HSB slave on the HRESP bus during a DMA
transfer. In addition, the DMA transfer is cancelled and the channel is disabled.

Alm L 221

32003M-AVR32-09/09 I ©

17.12.11 Interrupt Raw Status Registers

Name: RawTfr, RawBlock, RawSrcTran, RawDstTran, RawErr

Access Type: Read-only

Offset: 0x2C0, 0x2C8, 0x2D0, 0x2D8, 0x2E0

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

. - - r-+r - +r - - [- [- /|
23 22 21 20 19 18 17 16

. - r - -7+ - {r -’ - [-} - |
15 14 13 12 11 10 9 8

. - r - - 7r -t - [- [-} - |
7 6 5 4 3 2 1 0

| i | i | i | i | i . maw2 | RAW1 | RAWO |

¢ RAW[2:0]Raw interrupt for each channel

Interrupt events are stored in these Raw Interrupt Status Registers before masking: RawTfr, RawBlock, RawSrcTran,
RawDstTran, RawErr. Each Raw Interrupt Status register has a bit allocated per channel, for example, RawTfr[2] is Chan-
nel 2’s raw transfer complete interrupt. Each bit in these registers is cleared by writing a 1 to the corresponding location in
the ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran, ClearErr registers.

Alm L 222

32003M-AVR32-09/09 I ©

17.12.12 Interrupt Status Registers

Name: StatusTfr, StatusBlock, StatusSrcTran, StatusDstTran, StatusErr

Access Type: Read-only

Offset: 0x2E8, 0x2F0, 0x2F8, 0x300, 0x308

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

T T T]
23 22 21 20 19 18 17 16

I N S R]
15 14 13 12 11 10 9 8

I R S R]
7 6 5 4 3 2 1 0

| ; | - | i - | i | sTaTusz | sTatust | sTATUSO |

e STATUS[2:0]

All interrupt events from all channels are stored in these Interrupt Status Registers after masking: StatusTfr, StatusBlock,
StatusSrcTran, StatusDstTran, StatusErr. Each Interrupt Status register has a bit allocated per channel, for example, Sta-
tusTfr[2] is Channel 2’s status transfer complete interrupt.The contents of these registers are used to generate the interrupt

signals leaving the DMACA.

32003M-AVR32-09/09

ATMEL

Y 5

223

17.12.13 Interrupt Mask Registers

Name: MaskTfr, MaskBlock, MaskSrcTran, MaskDstTran, MaskErr

Access Type: Read/Write

Offset: 0x310, 0x318, 0x320, 0x328, 0x330

Reset Value: 0x00000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8

‘ - ‘ - ‘ - ‘ - ‘ - ‘ INT_M_WE2 ‘ INT_M_WEH1 ‘ INT_M_WEO ‘

7 6 5 4 3 2 1 0

‘ - ‘ - ‘ - ‘ - ‘ - ‘ INT_MASK2 ‘ INT_MASK1 ‘ INT_MASKO ‘

The contents of the Raw Status Registers are masked with the contents of the Mask Registers: MaskTfr, MaskBlock, Mask-
SrcTran, MaskDstTran, MaskErr. Each Interrupt Mask register has a bit allocated per channel, for example, MaskTfr[2] is
the mask bit for Channel 2’s transfer complete interrupt.

A channel’s INT_MASK bit is only written if the corresponding mask write enable bit in the INT_MASK_WE field is asserted
on the same System Bus write transfer. This allows software to set a mask bit without performing a read-modified write
operation.

For example, writing hex 01x1 to the MaskTfr register writes a 1 into MaskTfr[0], while MaskTfr[7:1] remains unchanged.
Writing hex 00xx leaves MaskTfr[7:0] unchanged.

Writing a 1 to any bit in these registers unmasks the corresponding interrupt, thus allowing the DMACA to set the appropri-
ate bit in the Status Registers.

e INT_M_WE[10:8]: Interrupt Mask Write Enable
0 = Write disabled

1 = Write enabled

e INT_MASK][2:0]: Interrupt Mask
0= Masked

1 = Unmasked

Alm L 224

32003M-AVR32-09/09 I ©

17.12.14 Interrupt Clear Registers

Name: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran, ClearErr

Access Type: Write-only

Offset: 0x338, 0x340, 0x348, 0x350, 0x358

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

. - - r-+r - +r - - [- [- /|
23 22 21 20 19 18 17 16

. - r - -7+ - {r -’ - [-} - |
15 14 13 12 11 10 9 8

. - r - - 7r -t - [- [-} - |
7 6 5 4 3 2 1 0

|] | - | i | - | i | CLEAR2 | CLEAR1 | CLEARO |

e CLEARI[2:0]: Interrupt Clear
0 = No effect

1 = Clear interrupt

Each bit in the Raw Status and Status registers is cleared on the same cycle by writing a 1 to the corresponding location in
the Clear registers: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran, ClearErr. Each Interrupt Clear register has a bit allo-
cated per channel, for example, ClearTfr[2] is the clear bit for Channel 2’s transfer complete interrupt. Writing a 0 has no
effect. These registers are not readable.

Alm L 225

32003M-AVR32-09/09 I ©

17.12.15 Combined Interrupt Status Registers

Name: Statusint

Access Type: Read-only

Offset: 0x360

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

. - ! - r - r - r - ;- ;- §; - |
23 22 21 20 19 18 17 16

. - - - +r - +r - - [- [- |
15 14 13 12 11 10 9 8

. - r - - +r - +r - - [- [- |
7 6 5 4 3 2 1 0

‘ - ‘ - ‘ - ‘ ERR ‘ DSTT ‘ SRCT ‘ BLOCK ‘ TFR ‘

The contents of each of the five Status Registers (StatusTfr, StatusBlock, StatusSrcTran, StatusDstTran, StatusErr) is
OR’ed to produce a single bit per interrupt type in the Combined Status Register (Statusint).

* ERR
OR of the contents of StatusErr Register.

e DSTT
OR of the contents of StatusDstTran Register.

e SRCT
OR of the contents of StatusSrcTran Register.

e BLOCK
OR of the contents of StatusBlock Register.

« TFR
OR of the contents of StatusTfr Register.

Alm L 226

32003M-AVR32-09/09 I ©

17.12.16 Source Software Transaction Request Register

Name: ReqSrcReg

Access Type: Read/write

Offset: 0x368

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

. - - r-+r - +r - - [- [- /|
23 22 21 20 19 18 17 16

. - r - -1+ -{r - °rr - [- [- |
15 14 13 12 11 10 9 8

| i | - | i | - | : | REQ_WE2 | REQ_WE1 | REQ_WEO |
7 6 5 4 3 2 1 0

‘ - ‘ - ‘ - ‘ - ‘ - ‘ SRC_REQ2 ‘ SRC_REQ1 ‘ SRC_REQO ‘

A bit is assigned for each channel in this register. ReqSrcReg[n] is ignored when software handshaking is not enabled for
the source of channel n.

A channel SRC_REQ bit is written only if the corresponding channel write enable bit in the REQ_WE field is asserted on
the same System Bus write transfer.

For example, writing 0x101 writes a 1 into ReqSrcReg[0], while ReqSrcReg[4:1] remains unchanged. Writing hex 0x0yy
leaves ReqSrcReg[4:0] unchanged. This allows software to set a bit in the ReqSrcReg register without performing a read-
modified write

e REQ_WE[10:8]: Request write enable
0 = Write disabled

1 = Write enabled
¢ SRC_REQ[2:0]: Source request

Alm L 227

32003M-AVR32-09/09 I ©

17.12.17 Destination Software Transaction Request Register

Name: ReqgDstReg

Access Type: Read/write

Offset: 0x370

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

I R S -]
23 22 21 20 19 18 17 16

I SN -]
15 14 13 12 11 10 9 8

| i | - | - - | - | REQ_WE2 | REQ_WE1 | REQ_WEO |
7 6 5 4 3 2 1 0

‘ DST_REQ2 ‘ DST_REQ1 ‘ DST_REQO ‘

A bit is assigned for each channel in this register. ReqDstReg[n] is ignored when software handshaking is not enabled for

the source of channel n.

A channel DST_REAQ bit is written only if the corresponding channel write enable bit in the REQ_WE field is asserted on the

same System Bus write transfer.

e REQ_WE[10:8]: Request write enable

0 = Write disabled
1 = Write enabled

e DST_REQJ[2:0]: Destination request

32003M-AVR32-09/09

ATMEL

Y 5

228

17.12.18 Single Source Transaction Request Register

Name: SglReqSrcReg

Access Type: Read/write

Offset: 0x378

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

[N R B R -]
23 22 21 20 19 18 17 16

N N S B B -]
15 14 13 12 11 10 9 8

‘ - ‘ - ‘ - ‘ - ‘ - ‘ REQ_WE2 ‘ REQ_WE1 ‘ REQ_WEO ‘
7 6 5 4 3 2 1 0

| S_SG_REQ2 | S_SG_REQ1 | S_SG_REQO |

A bit is assigned for each channel in this register. SgIReqSrcReg[n] is ignored when software handshaking is not enabled

for the source of channel n.

A channel S_SG_REQ bit is written only if the corresponding channel write enable bit in the REQ_WE field is asserted on

the same System Bus write transfer.

e REQ_WE[10:8]: Request write enable
0 = Write disabled

1 = Write enabled
e S_SG_REQ[2:0]: Source single request

ATMEL

32003M-AVR32-09/09 I ©

229

17.12.19 Single Destination Transaction Request Register

Name: SglRegDstReg

Access Type: Read/write

Offset: 0x380

Reset Value: 0x0000000
31 30 29 28 27 26 25 24

[N R B R R -]
23 22 21 20 19 18 17 16

N N N B B -]
15 14 13 12 11 10 9 8

‘ - ‘ - ‘ - ‘ - ‘ - ‘ REQ_WE2 ‘ REQ_WE1 ‘ REQ_WEO ‘
7 6 5 4 3 2 1 0

| D_SG_REQ2 | D_SG_REQ1 | D_SG_REQO |

A bit is assigned for each channel in this register. SgIReqDstReg[n] is ignored when software handshaking is not enabled

for the source of channel n.

A channel D_SG_REQ bit is written only if the corresponding channel write enable bit in the REQ_WE field is asserted on

the same System Bus write transfer.

e REQ_WE[10:8]: Request write enable
0 = Write disabled

1 = Write enabled
e D_SG_REQ[2:0]: Destination single request

ATMEL

32003M-AVR32-09/09 I ©

230

17.12.20 Last Source Transaction Request Register

Name: LstSrcReg
Access Type: Read/write
Offset: 0x388
Reset Value: 0x0000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
- - - - - LSTSRC_W LSTSRC_W LSTSRC_W
E2 E1 EO
7 6 5 4 3 2 1 0
- - - - - LSTSRC2 LSTSRCH1 LSTSRCO

A bit is assigned for each channel in this register. LstSrcReg[n] is ignored when software handshaking is not enabled for
the source of channel n.

A channel LSTSRC bit is written only if the corresponding channel write enable bit in the LSTSRC_WE field is asserted on
the same System Bus write transfer.

e LSTSRC_WE[10:8]: Source Last Transaction request write enable
0 = Write disabled

1 = Write enabled
e LSTSRC[2:0]: Source Last Transaction request

Alm L 231

32003M-AVR32-09/09 I ©

17.12.21 Last Destination Transaction Request Register

Name: LstDstReg
Access Type: Read/write
Offset: 0x390
Reset Value: 0x00000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
- - - - - LSTDST_WE | LSTDST_WE | LSTDST_WE
2 1 0
7 6 5 4 3 2 1 0
- - - - - LSTDST2 LSTDSTH1 LSTDSTO

A bit is assigned for each channel in this register. LstDstReg[n] is ignored when software handshaking is not enabled for
the source of channel n.

A channel LSTDST bit is written only if the corresponding channel write enable bit in the LSTDST_WE field is asserted on

the same System Bus write transfer.

e LSTDST_WE[10:8]: Destination Last Transaction request write enable

0 = Write disabled
1 = Write enabled
e LSTDST[2:0]: Destination Last Transaction request

32003M-AVR32-09/09

ATMEL

Y 5

232

17.12.22 DMA Configuration Register

Name: DmaCfgReg

Access Type: Read/Write

Offset: 0x398

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

. - ! - r - r -+ - ;r - ;@ - [- |
23 22 21 20 19 18 17 16

. - - r - r - r - ;- ;- [} - |
15 14 13 12 11 10 9 8

. - ! - -+ - ;r - ;- -} - [- |
7 6 5 4 3 2 1 0

e DMA_EN: DMA Controller Enable
0 = DMACA Disabled

1 = DMACA Enabled.
This register is used to enable the DMACA, which must be done before any channel activity can begin.
If the global channel enable bit is cleared while any channel is still active, then DmaCfgReg.DMA_EN still returns ‘1’ to indi-

cate that there are channels still active until hardware has terminated all activity on all channels, at which point the
DmaCfgReg.DMA_EN bit returns ‘0’.

Alm L 233

32003M-AVR32-09/09 I ©

17.12.23 DMA Channel Enable Register

Name: ChEnReg

Access Type: Read/Write

Offset: 0x3A0

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

. - ! - r - r -+ - ;r - ;@ - [- |
23 22 21 20 19 18 17 16

. - - - +r - +r - - [- [- |
15 14 13 12 11 10 9 8
- - - - - CH_EN_WE CH_EN_WE CH_EN_WE

2 1 0

7 6 5 4 3 2 1 0
- - - - - CH_EN2 CH_EN1 CH_ENO

e CH_EN_WE[10:8]: Channel Enable Write Enable

The channel enable bit, CH_EN, is only written if the corresponding channel write enable bit, CH_EN_WE, is asserted on
the same System Bus write transfer.

For example, writing 0x101 writes a 1 into ChEnReg[0], while ChEnReg[7:1] remains unchanged.

e CH_EN[2:0]
0 = Disable the Channel
1 = Enable the Channel

Enables/Disables the channel. Setting this bit enables a channel, clearing this bit disables the channel.
The ChEnReg.CH_EN bit is automatically cleared by hardware to disable the channel after the last System Bus transfer of

the DMA transfer to the destination has completed.Software can therefore poll this bit to determine when a DMA transfer
has completed.

Alm L 234

32003M-AVR32-09/09 I ©

17.12.24 DMACA Component Id Register Low

Name: DmaCompldRegL

Access Type: Read-only

Offset: O0x3F8

Reset Value: 0x44571110
31 30 29 28 27 26 25 24

‘ DMA_COMP_TYPE[31:24] ‘
23 22 21 20 19 18 17 16

‘ DMA_COMP_TYPE[23:16] ‘
15 14 13 12 11 10 9 8

‘ DMA_COMP_TYPE[15:8] ‘
7 6 5 4 3 2 1 0

‘ DMA_COMP_TYPE[7:0] ‘

e DMA_COMP_TYPE
DesignWare component type number = 0x44571110.

This assigned unique hex value is constant and is derived from the two ASCII letters “DW” followed by a 32-bit unsigned
number

Alm L 235

32003M-AVR32-09/09 I ©

17.12.25 DMACA Component Id Register High

Name: DmaCompldRegH

Access Type: Read-only

Offset: 0x3FC

Reset Value: 0x3230362A
31 30 29 28 27 26 25 24

‘ DMA_COMP_VERSION[31:24] ‘
23 22 21 20 19 18 17 16

‘ DMA_COMP_VERSION[23:16] ‘
15 14 13 12 11 10 9 8

| DMA_COMP_VERSION[15:8] |
7 6 5 4 3 2 1 0

‘ DMA_COMP_VERSION[7:0] ‘

e DMA_COMP_VERSION: Version of the component

Alm L 236

32003M-AVR32-09/09 I ©

18. Peripheral DMA Controller (PDC)

Rev: 1.0.0.1
18.1 Features

* Generates Transfers to/from Peripherals such as USART, SSC and SPI

¢ Supports Up to 20 Channels (Product Dependent)

One Master Clock Cycle Needed for a Transfer from Memory to Peripheral
Two Master Clock Cycles Needed for a Transfer from Peripheral to Memory

18.2 Description

The Peripheral DMA Controller (PDC) transfers data between on-chip serial peripherals such as
the UART, USART, SSC, SPI, and the on- and off-chip memories. Using the Peripheral DMA
Controller avoids processor intervention and removes the processor interrupt-handling over-
head. This significantly reduces the number of clock cycles required for a data transfer and, as a
result, improves the performance of the microcontroller and makes it more power efficient.

The PDC channels are implemented in pairs, each pair being dedicated to a particular periph-
eral. One channel in the pair is dedicated to the receiving channel and one to the transmitting
channel of each UART, USART, SSC and SPI.

The user interface of a PDC channel is integrated in the memory space of each peripheral. It
contains:

* A 32-bit memory pointer register

* A 16-bit transfer count register

* A 32-bit register for next memory pointer

* A 16-bit register for next transfer count

The peripheral triggers PDC transfers using transmit and receive signals. When the pro-
grammed data is transferred, an end of transfer interrupt is generated by the corresponding
peripheral.

Alm L 237

32003M-AVR32-09/09 I ©

18.3 Block Diagram

Figure 18-1. Block Diagram

Peripheral Peripheral DMA Controller
THR PDC Channel 0
Memory
RHR PDC Channel 1 > Control => Controller

Status & Control

Control <

AIMEL 238

32003M-AVR32-09/09 I ©

18.4 Product Dependencies

18.4.1 Power Management

18.4.2 Interrupt

18.4.3 Peripherals

The PDC clock is generated by the Power Manager. The PDC also depends on the HSB-HSB
bridge clock. Before using the PDC, the programmer must ensure that the PDC clock and HSB-
HSB bridge clock are enabled in the Power Manager.

To prevent bus errors the PDC operation must be terminated before entering sleep mode

The PDC has an interrupt line for each channel connected to the Interrupt Controller via the cor-
responding peripheral. Handling the PDC interrupt requires programming the interrupt controller
before configuring the PDC.

Before using each PDC channel the corresponding peripheral has to be configured correctly.

18.5 Functional Description

18.5.1 Configuration

32003M-AVR32-09/09

The PDC channels user interface enables the user to configure and control the data transfers for
each channel. The user interface of a PDC channel is integrated into the user interface of the
peripheral (offset 0x100), which it is related to.

Per peripheral, it contains four 32-bit Pointer Registers (RPR, RNPR, TPR, and TNPR) and four
16-bit Counter Registers (RCR, RNCR, TCR, and TNCR).

The size of the buffer (humber of transfers) is configured in an internal 16-bit transfer counter
register, and it is possible, at any moment, to read the number of transfers left for each channel.

The memory base address is configured in a 32-bit memory pointer by defining the location of
the first address to access in the memory. It is possible, at any moment, to read the location in
memory of the next transfer and the number of remaining transfers. The PDC has dedicated sta-
tus registers which indicate if the transfer is enabled or disabled for each channel. The status for
each channel is located in the peripheral status register. Transfers can be enabled and/or dis-
abled by setting TXTEN/TXTDIS and RXTEN/RXTDIS in PDC Transfer Control Register. These
control bits enable reading the pointer and counter registers safely without any risk of their
changing between both reads.

The PDC sends status flags to the peripheral visible in its status-register (ENDRX, ENDTX,
RXBUFF, and TXBUFE).

ENDRX flag is set when the PERIPH_RCR register reaches zero.
RXBUFF flag is set when both PERIPH_RCR and PERIPH_RNCR reach zero.
ENDTX flag is set when the PERIPH_TCR register reaches zero.
TXBUFE flag is set when both PERIPH_TCR and PERIPH_TNCR reach zero.

These status flags are described in the peripheral status register.

Alm L 239

Y 5

18.5.2 Memory Pointers

Each peripheral is connected to the PDC by a receiver data channel and a transmitter data
channel. Each channel has an internal 32-bit memory pointer. Each memory pointer points to a
location anywhere in the memory space (on-chip memory or external bus interface memory).

Depending on the type of transfer (byte, half-word or word), the memory pointer is incremented
by 1, 2 or 4, respectively for peripheral transfers. The size of the transfer is setup up in the
peripheral’s control register and automatically sensed by the PDC. The size is always rounded
up to wither byte, half-word or word.

If a memory pointer is reprogrammed while the PDC is in operation, the transfer address is
changed, and the PDC performs transfers using the new address.

18.5.3 Transfer Counters

18.5.4 Data Transfers

32003M-AVR32-09/09

There is one internal 16-bit transfer counter for each channel used to count the size of the block
already transferred by its associated channel. These counters are decremented after each data
transfer. When the counter reaches zero, the transfer is complete and the PDC stops transfer-
ring data.

If the Next Counter Register is equal to zero, the PDC disables the trigger while activating the
related peripheral end flag.

If the counter is reprogrammed while the PDC is operating, the number of transfers is updated
and the PDC counts transfers from the new value.

Programming the Next Counter/Pointer registers chains the buffers. The counters are decre-
mented after each data transfer as stated above, but when the transfer counter reaches zero,
the values of the Next Counter/Pointer are loaded into the Counter/Pointer registers in order to
re-enable the triggers.

For each channel, two status bits indicate the end of the current buffer (ENDRX, ENTX) and the
end of both current and next buffer (RXBUFF, TXBUFE). These bits are directly mapped to the
peripheral status register and can trigger an interrupt request to the Interrupt Controller.

The peripheral end flag is automatically cleared when one of the counter-registers (Counter or
Next Counter Register) is written.

Note: When the Next Counter Register is loaded into the Counter Register, it is set to zero.

The peripheral triggers PDC transfers using transmit (TXRDY) and receive (RXRDY) signals.

When the peripheral receives an external character, it sends a Receive Ready signal to the PDC
which then requests access to the system bus. When access is granted, the PDC starts a read
of the peripheral Receive Holding Register (RHR) and then triggers a write in the memory.

After each transfer, the relevant PDC memory pointer is incremented and the number of trans-
fers left is decremented. When the memory block size is reached, a signal is sent to the
peripheral and the transfer stops.

The same procedure is followed, in reverse, for transmit transfers.

Alm L 240

Y 5

18.5.5 Priority of PDC Transfer Requests

32003M-AVR32-09/09

The Peripheral DMA Controller handles transfer requests from the channel according to priori-
ties fixed for each product.These priorities are defined in the product datasheet.

If simultaneous requests of the same type (receiver or transmitter) occur on identical peripher-
als, the priority is determined by the numbering of the peripherals.

If transfer requests are not simultaneous, they are treated in the order they occurred. Requests
from the receivers are handled first and then followed by transmitter requests.

Alm L 241

Y 5

18.6 Peripheral DMA Controller (PDC) User Interface

Table 18-1. Register Mapping

Offset Register Register Name Read/Write Reset
0x100 Receive Pointer Register PERIPH")_RPR Read/Write 0x0
0x104 Receive Counter Register PERIPH_RCR Read/Write 0x0
0x108 Transmit Pointer Register PERIPH_TPR Read/Write 0x0
0x10C Transmit Counter Register PERIPH_TCR Read/Write 0x0
0x110 Receive Next Pointer Register PERIPH_RNPR Read/Write 0x0
0x114 Receive Next Counter Register PERIPH_RNCR Read/Write 0x0
0x118 Transmit Next Pointer Register PERIPH_TNPR Read/Write 0x0
0x11C Transmit Next Counter Register PERIPH_TNCR Read/Write 0x0
0x120 PDC Transfer Control Register PERIPH_PTCR Write-only -
0x124 PDC Transfer Status Register PERIPH_PTSR Read-only 0x0

Note: 1. PERIPH: Ten registers are mapped in the peripheral memory space at the same offset. These can be defined by the user
according to the function and the peripheral desired (USART, SSC, SPI, etc).

AIMEL 242

32003M-AVR32-09/09 I ©

18.6.1 PDC Receive Pointer Register

Register Name: PERIPH_RPR

Access Type: Read/Write
31 30 29 28 27 26 25 24

| RXPTR |
23 22 21 20 19 18 17 16

| RXPTR |
15 14 13 12 11 10 9 8

| RXPTR |
7 6 5 4 3 2 1 0

| RXPTR |

* RXPTR: Receive Pointer Address
Address of the next receive transfer.

32003M-AVR32-09/09

ATMEL

Y 5

243

18.6.2 PDC Receive Counter Register

Register Name: PERIPH_RCR
Access Type: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| RXCTR |
7 6 5 4 3 2 1 0
| RXCTR |

* RXCTR: Receive Counter Value
Number of receive transfers to be performed.

AIMEL 244

32003M-AVR32-09/09 I ©

18.6.3 PDC Transmit Pointer Register

Register Name: PERIPH_TPR

Access Type: Read/Write
31 30 29 28 27 26 25 24

| TXPTR |
23 22 21 20 19 18 17 16

| TXPTR |
15 14 13 12 11 10 9 8

| TXPTR |
7 6 5 4 3 2 1 0

| TXPTR |

e TXPTR: Transmit Pointer Address
Address of the transmit buffer.

32003M-AVR32-09/09

ATMEL

Y 5

245

18.6.4 PDC Transmit Counter Register

Register Name: PERIPH_TCR
Access Type: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| TXCTR |
7 6 5 4 3 2 1 0
| TXCTR |

e TXCTR: Transmit Counter Value

TXCTR is the size of the transmit transfer to be performed. At zero, the peripheral data transfer is stopped.

32003M-AVR32-09/09

ATMEL

Y 5

246

18.6.5 PDC Receive Next Pointer Register

Register Name: PERIPH_RNPR

Access Type: Read/Write
31 30 29 28 27 26 25 24

| RXNPTR |
23 22 21 20 19 18 17 16

| RXNPTR |
15 14 13 12 11 10 9 8

| RXNPTR |
7 6 5 4 3 2 1 0

| RXNPTR |

* RXNPTR: Receive Next Pointer Address

RXNPTR is the address of the next buffer to fill with received data when the current buffer is full.

32003M-AVR32-09/09

ATMEL

Y 5

247

18.6.6 PDC Receive Next Counter Register

Register Name: PERIPH_RNCR
Access Type: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| RXNCR |
7 6 5 4 3 2 1 0
| RXNCR |

* RXNCR: Receive Next Counter Value
RXNCR is the size of the next buffer to receive.

AIMEL 248

32003M-AVR32-09/09 I ©

18.6.7 PDC Transmit Next Pointer Register

Register Name: PERIPH_TNPR

Access Type: Read/Write
31 30 29 28 27 26 25 24

| TXNPTR |
23 22 21 20 19 18 17 16

| TXNPTR |
15 14 13 12 11 10 9 8

| TXNPTR |
7 6 5 4 3 2 1 0

| TXNPTR |

* TXNPTR: Transmit Next Pointer Address

TXNPTR is the address of the next buffer to transmit when the current buffer is empty.

32003M-AVR32-09/09

ATMEL

Y 5

249

18.6.8 PDC Transmit Next Counter Register

Register Name: PERIPH_TNCR
Access Type: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| TXNCR |
7 6 5 4 3 2 1 0
| TXNCR |

* TXNCR: Transmit Next Counter Value
TXNCR is the size of the next buffer to transmit.

AIMEL 250

32003M-AVR32-09/09 I ©

18.6.9 PDC Transfer Control Register

Register Name: PERIPH_PTCR

Access Type: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| - | - | - | - | - | — | TxTDIS | TXTEN]
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | mBxtDIS | RXTEN |

* RXTEN: Receiver Transfer Enable
0 = No effect.

1 = Enables the receiver PDC transfer requests if RXTDIS is not set.

* RXTDIS: Receiver Transfer Disable
0 = No effect.

1 = Disables the receiver PDC transfer requests.

e TXTEN: Transmitter Transfer Enable
0 = No effect.

1 = Enables the transmitter PDC transfer requests.

e TXTDIS: Transmitter Transfer Disable
0 = No effect.

1 = Disables the transmitter PDC transfer requests

AIMEL 251

32003M-AVR32-09/09 I ©

18.6.10 PDC Transfer Status Register

Register Name: PERIPH_PTSR
Access Type: Read-only
31 30 29 28 27 26 25 24
I I I R R -]
23 22 21 20 19 18 17 16
I I S R R -]
15 14 13 12 11 10 9 8
r - - r - [- [- - - | TxtEn |
7 6 5 4 3 2 0
I I N N R - S

* RXTEN: Receiver Transfer Enable
0 = Receiver PDC transfer requests are disabled.

1 = Receiver PDC transfer requests are enabled.

¢ TXTEN: Transmitter Transfer Enable
0 = Transmitter PDC transfer requests are disabled.

1 = Transmitter PDC transfer requests are enabled.

32003M-AVR32-09/09

ATMEL

252

19. Parallel Input/Output Controller (P1O)

19.1 Features

19.2 Description

32003M-AVR32-09/09

Rev: 2.0.2.3

Up to 32 Programmable I/O Lines
* Fully Programmable through Set/Clear Registers
¢ Multiplexing of Two Peripheral Functions per I/O Line
For each 1/O Line (Whether Assigned to a Peripheral or Used as General Purpose 1/0)
— Input Change Interrupt
— Glitch Filter
— Programmable Pull Up on Each /O Line
— Pin Data Status Register, Supplies Visibility of the Level on the Pin at Any Time
¢ Synchronous Output, Provides Set and Clear of Several I/O lines in a Single Write

The Parallel Input/Output Controller (PIO) manages up to 32 fully programmable input/output
lines. Each I/O line may be dedicated as a general-purpose I/O or be assigned to a function of
an embedded peripheral. This assures effective optimization of the pins of a product.

Each /O line is associated with a bit number in all of the 32-bit registers of the 32-bit wide User
Interface.

Each 1/0O line of the PIO Controller features:

*An input change interrupt enabling level change detection on any I/O line.
*A glitch filter providing rejection of pulses lower than one-half of clock cycle.
*Control of the the pull-up of the I/O line.

eInput visibility and output control.

The PIO Controller also features a synchronous output providing up to 32 bits of data output in a
single write operation.

Alm L 253

Y 5

19.3 Block Diagram

Figure 19-1. Block Diagram

PIO Controller

Interrupt PIO Interrupt
Controller
CLK_PIO
Power Manager

| Data, Enable N

| € > > Up to 32
peripheral I0s
Embedded |
Peripheral
< <—>|:| PIN O
Data, Enable
| A <—>|:| PIN 1
|<—> Up to 32 pins
- Up to 32 :
Embedded > peripheral 10s pe
Peripheral PIN 31
J ‘ 'l:l

Peripheral Bus

Figure 19-2. Application Block Diagram

On-Chip Peripheral Drivers

Keyboard Driver Control & Command
Driver

On-Chip Peripherals

PIO Controller

Keyboard Driver General Purpose I/Os External Devices

Alm L 254

32003M-AVR32-09/09 I ©

19.4 Product Dependencies

19.4.1 Pin Multiplexing

Each pin is configurable, according to product definition as either a general-purpose 1/O line
only, or as an /O line multiplexed with one or two peripheral 1/0s. As the multiplexing is hard-
ware-defined and thus product-dependent, the hardware designer and programmer must
carefully determine the configuration of the PIO controllers required by their application. When
an I/O line is general-purpose only, i.e. not multiplexed with any peripheral 1/0, programming of
the PIO Controller regarding the assignment to a peripheral has no effect and only the PIO Con-
troller can control how the pin is driven by the product.

19.4.2 External Interrupt Lines

The external interrupt request signals are most generally multiplexed through the PIO Control-
lers. However, it is not necessary to assign the 1/O line to the interrupt function as the PIO
Controller has no effect on inputs and the external interrupt lines are used only as inputs.

19.4.3 Power Management

The PIO clock (CLK_PIO) is generated by the Power Manager. Before accessing the PIO, the
programmer must ensure that CLK_PIO is enabled in the Power Manager. Note that CLK_PIO
must be enabled when using the Input Change interrupt.

In the PIO description, CLK_PIO is the clock of the peripheral bus to which the PIO is
connected.

19.4.4 Interrupt Generation

32003M-AVR32-09/09

The PIO interrupt line is connected to the Interrupt Controller. Using the PIO interrupt requires
the Interrupt Controller to be programmed first.

Alm L 255

Y 5

19.5 Functional Description

The PIO Controller features up to 32 fully-programmable 1/O lines. Most of the control logic asso-
ciated to each 1/0 is represented in Figure 19-3. In this description each signal shown
represents but one of up to 32 possible indexes.

Figure 19-3. 1/O Line Control Logic

OSR[0] \ PUERI0] T
ODRI[0] PUSR[0] z
13 PUDRI[0]

Peripheral A 0

Output Enable ————0
0

Peripheral B

Output Enable —— 1

BSR[0]
Peripheral A 0
Output
0
Peripheral B 1 L %
Output = 1 @
SODR[0]
ODSR([0] 0
CODRI0]

<F

Peripheral A
Input

Peripheral B
[posro [ismor] Input

Edge
Detector

(Up to 32 possible inputs)

PIO Interrupt

Glitch
Filter

roro [1w

Alm L 256

32003M-AVR32-09/09 I ©

19.5.1 Pull-up Resistor Control
Each I/O line is designed with an embedded pull-up resistor. The pull-up resistor can be enabled
or disabled by writing respectively PUER (Pull-up Enable Register) and PUDR (Pull-up Disable
Resistor). Writing in these registers results in setting or clearing the corresponding bit in PUSR
(Pull-up Status Register). Reading a 1 in PUSR means the pull-up is disabled and reading a 0
means the pull-up is enabled.

Control of the pull-up resistor is possible regardless of the configuration of the 1/0 line.

After reset, all of the pull-ups are enabled, i.e. PUSR resets at the value 0x0.

19.5.2 I/0 Line or Peripheral Function Selection
When a pin is multiplexed with one or two peripheral functions, the selection is controlled with
the registers PER (P1O Enable Register) and PDR (PIO Disable Register). The register PSR
(P10 Status Register) is the result of the set and clear registers and indicates whether the pin is
controlled by the corresponding peripheral or by the PIO Controller. A value of 0 indicates that
the pin is controlled by the corresponding on-chip peripheral selected in the ABSR (AB Select
Status Register). A value of 1 indicates the pin is controlled by the PIO controller.

If a pin is used as a general purpose I/O line (not multiplexed with an on-chip peripheral), PER
and PDR have no effect and PSR returns 1 for the corresponding bit.

After reset, most generally, the I/O lines are controlled by the PIO controller, i.e. PSR resets at
1. However, in some events, it is important that PIO lines are controlled by the peripheral (as in
the case of memory chip select lines that must be driven inactive after reset or for address lines
that must be driven low for booting out of an external memory). Thus, the reset value of PSR is
defined at the product level, depending on the multiplexing of the device.

19.5.3 Peripheral A or B Selection
The PIO Controller provides multiplexing of up to two peripheral functions on a single pin. The
selection is performed by writing ASR (A Select Register) and BSR (Select B Register). ABSR
(AB Select Status Register) indicates which peripheral line is currently selected. For each pin,
the corresponding bit at level 0 means peripheral A is selected whereas the corresponding bit at
level 1 indicates that peripheral B is selected.

Note that multiplexing of peripheral lines A and B only affects the output line. The peripheral
input lines are always connected to the pin input.

After reset, ABSR is 0, thus indicating that all the PIO lines are configured on peripheral A. How-
ever, peripheral A generally does not drive the pin as the PIO Controller resets in I/O line mode.

Writing in ASR and BSR manages ABSR regardless of the configuration of the pin. However,
assignment of a pin to a peripheral function requires a write in the corresponding peripheral
selection register (ASR or BSR) in addition to a write in PDR.

19.5.4 Output Control

When the 1/0 line is assigned to a peripheral function, i.e. the corresponding bit in PSR is at 0,
the drive of the 1/O line is controlled by the peripheral. Peripheral A or B, depending on the value
in ABSR, determines whether the pin is driven or not.

When the I/O line is controlled by the PIO controller, the pin can be configured to be driven. This
is done by writing OER (Output Enable Register) and ODR (Output Disable Register). The
results of these write operations are detected in OSR (Output Status Register). When a bit in this

Alm L 257

32003M-AVR32-09/09 I ©

register is at 0, the corresponding I/O line is used as an input only. When the bit is at 1, the cor-
responding I/O line is driven by the PIO controller.

The level driven on an I/O line can be determined by writing in SODR (Set Output Data Register)
and CODR (Clear Output Data Register). These write operations respectively set and clear
ODSR (Output Data Status Register), which represents the data driven on the I/O lines. Writing
in OER and ODR manages OSR whether the pin is configured to be controlled by the PIO con-
troller or assigned to a peripheral function. This enables configuration of the 1/O line prior to
setting it to be managed by the PIO Controller.

Similarly, writing in SODR and CODR effects ODSR. This is important as it defines the first level
driven on the 1/O line.

19.5.5 Multi-drive capability

The PIO is able to configure each pin as open drain to support external drivers on the same pin.
This is done by writing MDER (Multi-Drive Enable Register) and MDDR (Multi-Drive Disable
Register). The result of these write operations are detected in MDSR (multui-Drive Status Regis-
ter). The multi-drive mode is only available when the PIO is controlling the pin, i.e. PSR is set.

When using multi-drive the PIO will tri-state the pin when ODSR is set and drive the pin low
when ODSR is cleared. writing to OER or ODR will have no effect.

19.5.6 Synchronous Data Output

Controlling all parallel busses using several PIOs requires two successive write operations in the
SODR and CODR registers. This may lead to unexpected transient values. The PIO controller
offers a direct control of PIO outputs by single write access to ODSR (Output Data Status Regis-
ter). Only bits unmasked by OWSR (Output Write Status Register) are written. The mask bits in
the OWSR are set by writing to OWER (Output Write Enable Register) and cleared by writing to
OWDR (Output Write Disable Register).

After reset, the synchronous data output is disabled on all the 1/O lines as OWSR resets at 0x0.

19.5.7 Output Line Timings

Figure 19-4 shows how the outputs are driven either by writing SODR or CODR, or by directly
writing ODSR. This last case is valid only if the corresponding bit in OWSR is set. Figure 19-4
also shows when the feedback in PDSR is available.

Figure 19-4. Output Line Timings

CLK_PIO _|

Write SODR

| L

Peripheral Bus Access

Write ODSR at 1

Write CODR
Write ODSR at 0

Peripheral Bus Access

ODSR

PDSR

2 cycles 2 cycles

32003M-AVR32-09/09

Alm L 258

Y 5

19.5.8 Inputs
The level on each I/O line can be read through PDSR (Pin Data Status Register). This register
indicates the level of the I/O lines regardless of their configuration, whether uniquely as an input
or driven by the PIO controller or driven by a peripheral.

Reading the I/O line levels requires the clock of the PIO controller to be enabled, otherwise
PDSR reads the levels present on the 1/O line at the time the clock was disabled.

19.5.9 Input Glitch Filtering

Optional input glitch filters are independently programmable on each 1/O line. When the glitch fil-
ter is enabled, a glitch with a duration of less than 1/2 CLK_PIO cycle is automatically rejected,
while a pulse with a duration of 1 CLK_PIO cycle or more is accepted. For pulse durations
between 1/2 CLK_PIO cycle and 1 CLK_PIO cycle the pulse may or may not be taken into
account, depending on the precise timing of its occurrence. Thus for a pulse to be visible it must
exceed 1 CLK_PIO cycle, whereas for a glitch to be reliably filtered out, its duration must not
exceed 1/2 CLK_PIO cycle. The filter introduces one CLK_PIO cycle latency if the pin level
change occurs before a rising edge. However, this latency does not appear if the pin level
change occurs before a falling edge. This is illustrated in Figure 19-5.

The glitch filters are controlled by the register set; IFER (Input Filter Enable Register), IFDR
(Input Filter Disable Register) and IFSR (Input Filter Status Register). Writing IFER and IFDR
respectively sets and clears bits in IFSR. This last register enables the glitch filter on the 1/O
lines.

When the glitch filter is enabled, it does not modify the behavior of the inputs on the peripherals.
It acts only on the value read in PDSR and on the input change interrupt detection. The glitch fil-
ters require that the PIO Controller clock is enabled.

Figure 19-5. Input Glitch Filter Timing

ckpo || | | | L] | L | |
up tp 1.5 cycles
Pin Level |T|——|T| ”-l——l-n ” ”
1 cycle 1 cycle 1 cycle 1 cycle
PDSR
if IFSR=0
2 cycles . 1 cycle
PDSR up to 2.5 pycles up to 2 cycles
if IFSR =1 <

19.5.10 Input Change Interrupt

The PIO Controller can be programmed to generate an interrupt when it detects an input change
on an I/O line. The Input Change Interrupt is controlled by writing IER (Interrupt Enable Register)
and IDR (Interrupt Disable Register), which respectively enable and disable the input change
interrupt by setting and clearing the corresponding bit in IMR (Interrupt Mask Register). As Input
change detection is possible only by comparing two successive samplings of the input of the 1/0
line, the PIO Controller clock must be enabled. The Input Change Interrupt is available, regard-
less of the configuration of the 1/O line, i.e. configured as an input only, controlled by the PIO
Controller or assigned to a peripheral function.

Alm L 259

32003M-AVR32-09/09 I ©

When an input change is detected on an 1/O line, the corresponding bit in ISR (Interrupt Status
Register) is set. If the corresponding bit in IMR is set, the PIO Controller interrupt line is
asserted. The interrupt signals of the thirty-two channels are ORed-wired together to generate a
single interrupt signal to the Interrupt Controller.

When the software reads ISR, all the interrupts are automatically cleared. This signifies that all
the interrupts that are pending when ISR is read must be handled.

Figure 19-6. Input Change Interrupt Timings

ckpo || I L1 L1 | LI L1 |
Pin Level
ISR |
/ /
Read ISR [Peripheral Bus Access Peripheral Bus Access

19.6 1/O Lines Programming Example
The programing example as shown in Table 19-1 below is used to define the following
configuration.
*4-bit output port on 1/O lines 0 to 3, (should be written in a single write operation)
*Four output signals on 1/O lines 4 to 7 (to drive LEDs for example)

*Four input signals on I/O lines 8 to 11 (to read push-button states for example), with pull-up
resistors, glitch filters and input change interrupts

*Four input signals on I/0 line 12 to 15 to read an external device status (polled, thus no input
change interrupt), no pull-up resistor, no glitch filter

*|/O lines 16 to 19 assigned to peripheral A functions with pull-up resistor
¢|/O lines 20 to 23 assigned to peripheral B functions, no pull-up resistor
*I/O line 24 to 27 assigned to peripheral A with Input Change Interrupt and pull-up resistor

Alm L 260

32003M-AVR32-09/09 I ©

Table 19-1. Programming Example

Register Value to be Written
PER 0x0000 FFFF
PDR O0xOFFF 0000
OER 0x0000 O0OFF
ODR OxOFFF FFOO
IFER 0x0000 0F00
IFDR OXOFFF FOFF

SODR 0x0000 0000
CODR OxOFFF FFFF
IER 0x0F00 OF00
IDR 0x00FF FOFF
PUDR 0x00FO0 00FO0
PUER OxOFOF FFOF
ASR 0xOFOF 0000
BSR 0x00F0 0000
OWER 0x0000 000F
OWDR OxOFFF FFFO

AIMEL 261

32003M-AVR32-09/09 I ©

19.7 User Interface
Each 1/O line controlled by the PIO Controller is associated with a bit in each of the PIO Control-
ler User Interface registers. Each register is 32 bits wide. If a parallel I/O line is not defined,
writing to the corresponding bits has no effect. Undefined bits read zero. If the 1/O line is not mul-
tiplexed with any peripheral, the I/O line is controlled by the PIO Controller and PSR returns 1
systematically.

Table 19-2. Register Mapping

Offset Register Name Access Reset Value

0x0000 PIO Enable Register PER Write-only -

0x0004 PI1O Disable Register PDR Write-only -

0x0008 PIO Status Register PSR Read-only M

0x000C Reserved

0x0010 Output Enable Register OER Write-only -

0x0014 Output Disable Register ODR Write-only -

0x0018 Output Status Register OSR Read-only 0x0000 0000

0x001C Reserved

0x0020 Glitch Input Filter Enable Register IFER Write-only -

0x0024 Glitch Input Filter Disable Register IFDR Write-only -

0x0028 Glitch Input Filter Status Register IFSR Read-only 0x0000 0000

0x002C Reserved

0x0030 Set Output Data Register SODR Write-only -

0x0034 Clear Output Data Register CODR Write-only -
Read-only

0x0038 Output Data Status Register ODSR or 0x0000 0000

Read/Write®®

0x003C Pin Data Status Register® PDSR Read-only

0x0040 Interrupt Enable Register IER Write-only -

0x0044 Interrupt Disable Register IDR Write-only -

0x0048 Interrupt Mask Register IMR Read-only 0x0000 0000

0x004C Interrupt Status Register® ISR Read-only 0x0000 0000

0x0050 Multi-driver Enable Register MDER Write-only

0x0054 Multi-driver Disable Register MDDR Write-only

0x0058 Multi-driver Status Register MDSR Read-only

0x005C Reserved

0x0060 Pull-up Disable Register PUDR Write-only -

0x0064 Pull-up Enable Register PUER Write-only -

0x0068 Pad Pull-up Status Register PUSR Read-only 0x0000 0000

AIMEL 262

32003M-AVR32-09/09 I ©

Table 19-2. Register Mapping (Continued)

Offset Register Name Access Reset Value
0x006C Reserved

0x0070 Peripheral A Select Register® ASR Write-only -
0x0074 Peripheral B Select Register® BSR Write-only -
0x0078 AB Status Register® ABSR Read-only 0x0000 0000
gigggg o Reserved

0x00A0 Output Write Enable OWER Write-only -
0x00A4 Output Write Disable OWDR Write-only -
0x00A8 Output Write Status Register OWSR Read-only 0x0000 0000
0x00AC- 0x00FC | Reserved

Notes: 1. Reset value of PSR depends on the product implementation.

2. ODSR is Read-only or Read/Write depending on OWSR I/O lines.

3. Reset value of PDSR depends on the level of the I/O lines.

4. ISR is reset at 0x0. However, the first read of the register may read a different value as input changes may have occurred.
5. Only this set of registers clears the status by writing 1 in the first register and sets the status by writing 1 in the second

register.

AIMEL 263

32003M-AVR32-09/09 I ©

19.7.1 PIO Controller PIO Enable Register

Name: PER

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: PIO Enable
0 = No effect.
1 = Enables the PIO to control the corresponding pin (disables peripheral control of the pin).

A ||'|E|,® 264

32003M-AVR32-09/09

19.7.2 PIO Controller PIO Disable Register

Name: PDR

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e PO0-P31: PIO Disable
0 = No effect.
1 = Disables the PIO from controlling the corresponding pin (enables peripheral control of the pin).

A ||'|E|,® 265

32003M-AVR32-09/09

19.7.3 PIO Controller PIO Status Register

Name: PSR

Access Type: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: PIO Status
0 = PIO is inactive on the corresponding I/O line (peripheral is active).
1 = PIO is active on the corresponding I/O line (peripheral is inactive).

A ||'|E|,® 266

32003M-AVR32-09/09

19.7.4 PIO Controller Output Enable Register

Name: OER

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Output Enable
0 = No effect.
1 = Enables the output on the 1/O line.

A ||'|E|,® 267

32003M-AVR32-09/09

19.7.5 PIO Controller Output Disable Register

Name: ODR

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Output Disable
0 = No effect.
1 = Disables the output on the I/O line.

A ||'|E|,® 268

32003M-AVR32-09/09

19.7.6 PIO Controller Output Status Register

Name: OSR

Access Type: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

¢ P0-P31: Output Status
0 = The I/O line is a pure input.
1 =The I/O line is enabled in output.

A ||'|E|,® 269

32003M-AVR32-09/09

19.7.7 PIO Controller Glitch Input Filter Enable Register

Name: IFER

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Input Filter Enable
0 = No effect.
1 = Enables the input glitch filter on the 1/O line.

AIMEL 270

32003M-AVR32-09/09

19.7.8 PIO Controller Glitch Input Filter Disable Register

Name: IFDR

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

¢ P0-P31: Input Filter Disable
0 = No effect.
1 = Disables the input glitch filter on the I/O line.

A ||'|E|,® 271

32003M-AVR32-09/09

19.7.9 PIO Controller Glitch Input Filter Status Register

Name: IFSR

Access Type: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Input Filer Status
0 = The input glitch filter is disabled on the 1/O line.
1 = The input glitch filter is enabled on the I/O line.

A ||'|E|,® 272

32003M-AVR32-09/09

19.7.10 PIO Controller Set Output Data Register

Name: SODR

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Set Output Data
0 = No effect.
1 = Sets the data to be driven on the 1/O line.

AIMEL 273

32003M-AVR32-09/09

19.7.11 PIO Controller Clear Output Data Register

Name: CODR

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

¢ P0-P31: Set Output Data
0 = No effect.
1 = Clears the data to be driven on the 1/O line.

A ||'|E|,® 274

32003M-AVR32-09/09

19.7.12 PIO Controller Output Data Status Register

Name: ODSR

Access Type: Read-only or Read/Write
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

¢ P0-P31: Output Data Status
0 = The data to be driven on the 1/O line is 0.
1 = The data to be driven on the I/O line is 1.

A ||'|E|,® 275

32003M-AVR32-09/09

19.7.13 PIO Controller Pin Data Status Register

Name: PDSR

Access Type: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Output Data Status
0 = The I/O line is at level 0.
1 =The I/Oline is at level 1.

AIMEL 276

32003M-AVR32-09/09

19.7.14 PIO Controller Interrupt Enable Register

Name: IER

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Input Change Interrupt Enable
0 = No effect.
1 = Enables the Input Change Interrupt on the I/O line.

A mE|,® 277

32003M-AVR32-09/09

19.7.15 PIO Controller Interrupt Disable Register

Name: IDR

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Input Change Interrupt Disable
0 = No effect.
1 = Disables the Input Change Interrupt on the I/O line.

AIMEL 278

32003M-AVR32-09/09

19.7.16 PIO Controller Interrupt Mask Register

Name: IMR

Access Type: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Input Change Interrupt Mask
0 = Input Change Interrupt is disabled on the 1/O line.
1 = Input Change Interrupt is enabled on the 1/O line.

AIMEL 279

32003M-AVR32-09/09

19.7.17 PIO Controller Interrupt Status Register

Name: ISR

Access Type: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Input Change Interrupt Status
0 = No Input Change has been detected on the I/O line since ISR was last read or since reset.
1 = At least one Input Change has been detected on the /O line since ISR was last read or since reset.

A ||'|E|,® 280

32003M-AVR32-09/09

19.7.18 PIO Controller Multi-driver Enable Register

Name: MDER

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

This register is used to enable PIO output drivers to be configured as open drain to support external drivers on the same
pin.

e PO-P31:

0 = No effect.

1 = Enables multi-drive option on the corresponding pin.

A ||'|E|,® 281

32003M-AVR32-09/09

19.7.19 PIO Controller Multi-driver Disable Register

Name: MDDR

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

This register is used to diasble the open drain configuration of the output buffer.

¢ PO-P31:
0 = No effect.

1 = Disables multi-drive option on the corresponding pin.

A ||'|E|,® 282

32003M-AVR32-09/09

19.7.20 PIO Controller Multi-driver Status Register

Name: MDSR

Access Type: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

This register indicates which pins are configured with open drain drivers.

e PO-P31:
0 = PIO is not configured as an open drain.
1 =PIO is configured as an open drain.

A ||'|E|,® 283

32003M-AVR32-09/09

19.7.21 PIO Pull Up Disable Register

Name: PUDR

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Pull Up Disable.
0 = No effect.
1 = Disables the pull up resistor on the 1/O line.

A ||'|E|,® 284

32003M-AVR32-09/09

19.7.22 PIO Pull Up Enable Register

Name: PUER

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Pull Up Enable.
0 = No effect.
1 = Enables the pull up resistor on the I/O line.

A ||'|E|,® 285

32003M-AVR32-09/09

19.7.23 PIO Pull Up Status Register

Name: PUSR

Access Type: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Pull Up Status.
0 = Pull Up resistor is enabled on the I/O line.
1 = Pull Up resistor is disabled on the I/O line.

A ||'|E|,® 286

32003M-AVR32-09/09

19.7.24 PIO Peripheral A Select Register

Name: ASR

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e PO0-P31: Peripheral A Select.
0 = No effect.
1 = Assigns the I/O line to the Peripheral A function.

A ||'|E|,® 287

32003M-AVR32-09/09

19.7.25 PIO Peripheral B Select Register

Name: BSR

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Peripheral B Select.
0 = No effect.
1 = Assigns the 1/O line to the peripheral B function.

A ||'|E|,® 288

32003M-AVR32-09/09

19.7.26 PIO Peripheral A B Status Register

Name: ABSR

Access Type: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

¢ P0-P31: Peripheral A B Status.
0 = The I/O line is assigned to the Peripheral A.
1 =The I/O line is assigned to the Peripheral B.

A ||'|E|,® 289

32003M-AVR32-09/09

19.7.27 PIO Output Write Enable Register

Name: OWER

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Output Write Enable.
0 = No effect.
1 = Enables writing ODSR for the 1/O line.

A ||'|E|,® 290

32003M-AVR32-09/09

19.7.28 PIO Output Write Disable Register

Name: OWDR

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Output Write Disable.
0 = No effect.
1 = Disables writing ODSR for the 1/O line.

A ||'|E|,® 291

32003M-AVR32-09/09

19.7.29 PIO Output Write Status Register

Name: OWSR

Access Type: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Output Write Status.
0 = Writing ODSR does not affect the I/O line.
1 = Writing ODSR affects the I/O line.

A ||'|E|,® 292

32003M-AVR32-09/09

20. Serial Peripheral Interface (SPI)

20.1 Features

20.2 Description

32003M-AVR32-09/09

Rev:1.7.1.3

* Supports Communication with Serial External Devices
— Four Chip Selects with External Decoder Support Allow Communication with Up to 15
Peripherals
— Serial Memories, such as DataFlash and 3-wire EEPROMs
— Serial Peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and Sensors
— External Co-processors
* Master or Slave Serial Peripheral Bus Interface
— 8- to 16-bit Programmable Data Length Per Chip Select
— Programmable Phase and Polarity Per Chip Select
— Programmable Transfer Delays Between Consecutive Transfers and Between Clock and Data
Per Chip Select
— Programmable Delay Between Consecutive Transfers
— Selectable Mode Fault Detection
¢ Connection to PDC Channel Capabilities Optimizes Data Transfers
— One Channel for the Receiver, One Channel for the Transmitter
— Next Buffer Support

The Serial Peripheral Interface (SPI) circuit is a synchronous serial data link that provides com-
munication with external devices in Master or Slave Mode. It also enables communication
between processors if an external processor is connected to the system.

The Serial Peripheral Interface is essentially a shift register that serially transmits data bits to
other SPIs. During a data transfer, one SPI system acts as the “master™ which controls the data
flow, while the other devices act as “slaves" which have data shifted into and out by the master.
Different CPUs can take turn being masters (Multiple Master Protocol opposite to Single Master
Protocol where one CPU is always the master while all of the others are always slaves) and one
master may simultaneously shift data into multiple slaves. However, only one slave may drive its
output to write data back to the master at any given time.

A slave device is selected when the master asserts its NSS signal. If multiple slave devices
exist, the master generates a separate slave select signal for each slave (NPCS).

The SPI system consists of two data lines and two control lines:
¢ Master Out Slave In (MOSI): This data line supplies the output data from the master shifted
into the input(s) of the slave(s).

¢ Master In Slave Out (MISO): This data line supplies the output data from a slave to the input of
the master. There may be no more than one slave transmitting data during any particular
transfer.

¢ Serial Clock (SPCK): This control line is driven by the master and regulates the flow of the data
bits. The master may transmit data at a variety of baud rates; the SPCK line cycles once for
each bit that is transmitted.

» Slave Select (NSS): This control line allows slaves to be turned on and off by hardware.

AIMEL 293

Y 5

20.3 Block Diagram

Figure 20-1. Block Diagram

PDC

A
| ———
ral Bus
e
A4
Power MCK |
Manager

SPI Interface

Interrupt Control

32003M-AVR32-09/09

SPI Interrupt

ATMEL

PIO

SPCK

MISO

MOSI

NPCS0/NSS

NPCS1

NPCS2

NPCS3

bbb o

294

20.4 Application Block Diagram

Figure 20-2. Application Block Diagram: Single Master/Multiple Slave Implementation

g N\
SPCK SPCK
MISO MISO
Slave 0
MOSI MOSI
SPI Master NPCS0 NSS)
g N\
NPCS1 » SPCK
MISO
NPCS2—X NC Slave 1
NPCS3 > MOSI
~\NSS)
;KSPCK)
MISO
Slave 2
> MOSI
>\ NSS)

Alm L 295

32003M-AVR32-09/09 I ©

20.5 Signal Description

32003M-AVR32-09/09

Table 20-1. Signal Description

Type
Pin Name Pin Description Master Slave
MISO Master In Slave Out Input Output
MOSI Master Out Slave In Output Input
SPCK Serial Clock Output Input
NPCS1-NPCS3 Peripheral Chip Selects Output Unused
NPCSO0/NSS Peripheral Chip Select/Slave Select Output Input

ATMEL

Y 5

296

20.6 Product Dependencies
20.6.1 I/0 Lines

The pins used for interfacing the compliant external devices may be multiplexed with PIO lines.
The programmer must first program the PI1O controllers to assign the SPI pins to their peripheral
functions. To use the local loopback function the SPI pins must be controlled by the SPI.

20.6.2 Power Management

The SPI clock is generated by the Power Manager. Before using the SPI, the programmer must
ensure that the SPI clock is enabled in the Power Manager.

In the SPI description, Master Clock (MCK) is the clock of the peripheral bus to which the SPI is
connected.

20.6.3 Interrupt

The SPI interface has an interrupt line connected to the Interrupt Controller. Handling the SPI
interrupt requires programming the interrupt controller before configuring the SPI.

Alm L 297

32003M-AVR32-09/09 I ©

20.7 Functional Description

20.7.1 Modes of Operation

20.7.2 Data Transfer

32003M-AVR32-09/09

The SPI operates in Master Mode or in Slave Mode.

Operation in Master Mode is programmed by writing at 1 the MSTR bit in the Mode Register.
The pins NPCSO0 to NPCSS are all configured as outputs, the SPCK pin is driven, the MISO line
is wired on the receiver input and the MOSI line driven as an output by the transmitter.

If the MSTR bit is written at 0, the SPI operates in Slave Mode. The MISO line is driven by the
transmitter output, the MOSI line is wired on the receiver input, the SPCK pin is driven by the
transmitter to synchronize the receiver. The NPCSO0 pin becomes an input, and is used as a
Slave Select signal (NSS). The pins NPCS1 to NPCSS3 are not driven and can be used for other
purposes.

The data transfers are identically programmable for both modes of operations. The baud rate
generator is activated only in Master Mode.

Four combinations of polarity and phase are available for data transfers. The clock polarity is
programmed with the CPOL bit in the Chip Select Register. The clock phase is programmed with
the NCPHA bit. These two parameters determine the edges of the clock signal on which data is
driven and sampled. Each of the two parameters has two possible states, resulting in four possi-
ble combinations that are incompatible with one another. Thus, a master/slave pair must use the
same parameter pair values to communicate. If multiple slaves are used and fixed in different
configurations, the master must reconfigure itself each time it needs to communicate with a dif-
ferent slave.

Table 20-2 shows the four modes and corresponding parameter settings.

Table 20-2. SPI Bus Protocol Mode

SPI Mode CPOL NCPHA
0 0 1
1 0 0
2 1 1
3 1 0

Figure 20-3 and Figure 20-4 show examples of data transfers.

Alm L 298

Y 5

Figure 20-3. SPI Transfer Format (NCPHA = 1, 8 bits per transfer)

SPCK cycle (for reference)

SPCK
(CPOL = 0)

SPCK
(CPOL = 1)

MOSI
(from master)

MISO
(from slave)

NSS
(to slave)

1 2 3 4 5 6

MSB 6 5 4 3

>< LSB

MSB 6 5 4 3

>< LSB

* Not defined, but normally MSB of previous character received.

Figure 20-4. SPI Transfer Format (NCPHA = 0, 8 bits per transfer)

SPCK cycle (for reference)

SPCK
(CPOL =0)

SPCK
(CPOL = 1)

MOSI
(from master)

MISO
(from slave)

NSS
(to slave)

32003M-AVR32-09/09

1 2 3 4 5 6

MSB 6 5 4 3

>< LSB

LSB

* Not defined but normally LSB of previous character transmitted.

ATMEL

299

20.7.3 Master Mode Operations

32003M-AVR32-09/09

When configured in Master Mode, the SPI uses the internal programmable baud rate generator
as clock source. It fully controls the data transfers to and from the slave(s) connected to the SPI
bus. The SPI drives the chip select line to the slave and the serial clock signal (SPCK).

The SPI features two holding registers, the Transmit Data Register and the Receive Data Regis-
ter, and a single Shift Register. The holding registers maintain the data flow at a constant rate.

After enabling the SPI, a data transfer begins when the processor writes to the TDR (Transmit
Data Register). The written data is immediately transferred in the Shift Register and transfer on
the SPI bus starts. While the data in the Shift Register is shifted on the MOSI line, the MISO line
is sampled and shifted in the Shift Register. Transmission cannot occur without reception.

Before writing the TDR, the PCS field must be set in order to select a slave.

If new data is written in TDR during the transfer, it stays in it until the current transfer is com-
pleted. Then, the received data is transferred from the Shift Register to RDR, the data in TDR is
loaded in the Shift Register and a new transfer starts.

The transfer of a data written in TDR in the Shift Register is indicated by the TDRE bit (Transmit
Data Register Empty) in the Status Register (SR). When new data is written in TDR, this bit is
cleared. The TDRE bit is used to trigger the Transmit PDC channel.

The end of transfer is indicated by the TXEMPTY flag in the SR register. If a transfer delay (DLY-
BCT) is greater than 0 for the last transfer, TXEMPTY is set after the completion of said delay.
The master clock (MCK) can be switched off at this time.

The transfer of received data from the Shift Register in RDR is indicated by the RDRF bit
(Receive Data Register Full) in the Status Register (SR). When the received data is read, the
RDRF bit is cleared.

If the RDR (Receive Data Register) has not been read before new data is received, the Overrun
Error bit (OVRES) in SR is set. When this bit is set the SPI will continue to update RDR when
data is received, overwriting the previously received data. The user has to read the status regis-
ter to clear the OVRES bit.

Figure 20-5 on page 301 shows a block diagram of the SPI when operating in Master Mode. Fig-
ure 20-6 on page 302 shows a flow chart describing how transfers are handled.

Alm L 300

Y 5

20.7.3.1 Master Mode Block Diagram

Figure 20-5. Master Mode Block Diagram

| FDIV I

SPI_CSRO0..3
| SCBR
MCK 0 |
Baud Rate Generator
MCK/N 1
SPI
Clock
SPI_CSRo0..3
BITS SPI_RDR —] _RDRF
NCPHA [mRb__—{ ovmes
CPOL T
I
miso [] LSB Shift Register MSB
SPI_TDR
[T }—{ 1DRE |
SPI_CSRO0..3
CSAAT SPI_RDR
| I P> PCS
SPI_MR PCSDEC
PCS Current
L 1o Peripheral
SPI_TDR —
PCS
I
|~
| MSTR I
MODF
NPCSO| I 5
MODFDIS

32003M-AVR32-09/09

ATMEL

301

20.7.3.2

32003M-AVR32-09/09

Master Mode Flow Diagram

Figure 20-6. Master Mode Flow Diagram S

| SPI Enable |
T

- NPCS defines the current Chip Select
- CSAAT, DLYBS, DLYBCT refer to the fields of the
Chip Select Register corresponding to the Current Chip Select

- When NPCS is OxF, CSAAT is 0.

AT32AP7000

CSAAT ?

Fixed
peripheral

Variable
peripheral

SPI_TDR(PCS)

peripheral

Fixed

SPI_MR(PCS)

'

Serializer = SPI_TDR(TD)
TDRE =1

!

Data Transfer

!

SPI_RDR(RD) = Serializer
RDRF =1

b

Delay DLYBCT

=NPCS ? =NPCS ?
Variable
1 peripheral

NPCS = SPI_TDR(PCS) | | NPCS = SPI_MR(PCS) | | NPCS = OxF | | NPCS = OxF |
| Delay DLYBCS | | Delay DLYBCS |

[reswmwes] | [|

¥
Delay DLYBS

| NPCS = OxF |

!

| Delay DLYBCS |

ATMEL

Y 5

302

20.7.3.3 Clock Generation

The SPI Baud rate clock is generated by dividing the Master Clock (MCK) or the Master Clock
divided by 32, by a value between 1 and 255. The selection between Master Clock or Master
Clock divided by 32 is done by the FDIV value set in the Mode Register

This allows a maximum operating baud rate at up to Master Clock and a minimum operating
baud rate of MCK divided by 255*32.

Programming the SCBR field at 0 is forbidden. Triggering a transfer while SCBR is at 0 can lead
to unpredictable results.

At reset, SCBR is 0 and the user has to program it at a valid value before performing the first
transfer.

The divisor can be defined independently for each chip select, as it has to be programmed in the
SCBR field of the Chip Select Registers. This allows the SPI to automatically adapt the baud
rate for each interfaced peripheral without reprogramming.

20.7.3.4 Transfer Delays

Figure 20-7 shows a chip select transfer change and consecutive transfers on the same chip
select. Three delays can be programmed to modify the transfer waveforms:

* The delay between chip selects, programmable only once for all the chip selects by writing the
DLYBCS field in the Mode Register. Allows insertion of a delay between release of one chip
select and before assertion of a new one.

* The delay before SPCK, independently programmable for each chip select by writing the field
DLYBS. Allows the start of SPCK to be delayed after the chip select has been asserted.

* The delay between consecutive transfers, independently programmable for each chip select by
writing the DLYBCT field. Allows insertion of a delay between two transfers occurring on the
same chip select

These delays allow the SPI to be adapted to the interfaced peripherals and their speed and bus

release time.

Figure 20-7. Programmable Delays

Chip Select 1

Chip Select 2

SPCK

32003M-AVR32-09/09

DLYBCS DLYBS % % DLYBCT S S DLYBCT

Alm L 303

Y 5

20.7.3.5 Peripheral Selection

The serial peripherals are selected through the assertion of the NPCS0 to NPCS3 signals. By
default, all the NPCS signals are high before and after each transfer.

The peripheral selection can be performed in two different ways:

* Fixed Peripheral Select: SPI exchanges data with only one peripheral
* Variable Peripheral Select: Data can be exchanged with more than one peripheral

Fixed Peripheral Select is activated by writing the PS bit to zero in MR (Mode Register). In this
case, the current peripheral is defined by the PCS field in MR and the PCS field in TDR have no
effect.

Variable Peripheral Select is activated by setting PS bit to one. The PCS field in TDR is used to
select the current peripheral. This means that the peripheral selection can be defined for each
new data.

The Fixed Peripheral Selection allows buffer transfers with a single peripheral. Using the PDC is
an optimal means, as the size of the data transfer between the memory and the SPI is either 8
bits or 16 bits. However, changing the peripheral selection requires the Mode Register to be
reprogrammed.

The Variable Peripheral Selection allows buffer transfers with multiple peripherals without repro-
gramming the Mode Register. Data written in TDR is 32 bits wide and defines the real data to be
transmitted and the peripheral it is destined to. Using the PDC in this mode requires 32-bit wide
buffers, with the data in the LSBs and the PCS and LASTXFER fields in the MSBs, however the
SPI still controls the number of bits (8 to16) to be transferred through MISO and MOSI lines with
the chip select configuration registers. This is not the optimal means in term of memory size for
the buffers, but it provides a very effective means to exchange data with several peripherals
without any intervention of the processor.

20.7.3.6 Peripheral Chip Select Decoding

The user can program the SPI to operate with up to 15 peripherals by decoding the four Chip
Select lines, NPCSO0 to NPCS3 with an external logic. This can be enabled by writing the PCS-
DEC bit at 1 in the Mode Register (MR).

When operating without decoding, the SPI makes sure that in any case only one chip select line
is activated, i.e. driven low at a time. If two bits are defined low in a PCS field, only the lowest
numbered chip select is driven low.

When operating with decoding, the SPI directly outputs the value defined by the PCS field of
either the Mode Register or the Transmit Data Register (depending on PS).

As the SPI sets a default value of OxF on the chip select lines (i.e. all chip select lines at 1) when
not processing any transfer, only 15 peripherals can be decoded.

The SPI has only four Chip Select Registers, not 15. As a result, when decoding is activated,
each chip select defines the characteristics of up to four peripherals. As an example, CRS0
defines the characteristics of the externally decoded peripherals 0 to 3, corresponding to the
PCS values 0x0 to 0x3. Thus, the user has to make sure to connect compatible peripherals on
the decoded chip select lines 0to 3, 4to 7, 8 to 11 and 12 to 14.

Alm L 304

32003M-AVR32-09/09 I ©

20.7.3.7

Peripheral Deselection

When operating normally, as soon as the transfer of the last data written in TDR is completed,
the NPCS lines all rise. This might lead to runtime error if the processor is too long in responding
to an interrupt, and thus might lead to difficulties for interfacing with some serial peripherals
requiring the chip select line to remain active during a full set of transfers.

To facilitate interfacing with such devices, the Chip Select Register can be programmed with the
CSAAT bit (Chip Select Active After Transfer) at 1. This allows the chip select lines to remain in
their current state (low = active) until transfer to another peripheral is required.

Figure 20-8 shows different peripheral deselection cases and the effect of the CSAAT bit.

Figure 20-8. Peripheral Deselection

CSAAT =0
TDRE |
DLYBCT
NPCSI0..3] | A
DLYBCS
PCS = A
Write SPI_TDR i
TDRE |
DLYBCT
NPCS[0..3] | A
DLYBCS
PCS=A
Write SPI_TDR 1
TDRE |
DLYBCT
NPCSI0..3] B
DLYBCS
PCS =B
Write SPI_TDR 1

32003M-AVR32-09/09

ATMEL

Y 5

CSAAT =1
DLYBCT |—

A

DLYBCS

PCS=A

DLYBCT |
A

DLYBCS

PCS=A

I

DLYBCT

DLYBCS

PCS=B

305

20.7.3.8 Mode Fault Detection

A mode fault is detected when the SPI is programmed in Master Mode and a low level is driven
by an external master on the NPCS0/NSS signal. NPCS0, MOSI, MISO and SPCK must be con-
figured in open-drain through the PIO controller, so that external pull up resistors are needed to
guarantee high level.

When a mode fault is detected, the MODF bit in the SR is set until the SR is read and the SPI is
automatically disabled until re-enabled by writing the SPIEN bit in the CR (Control Register) at 1.

By default, the Mode Fault detection circuitry is enabled. The user can disable Mode Fault
detection by setting the MODFDIS bit in the SPI Mode Register (MR).

20.7.4 SPI Slave Mode

32003M-AVR32-09/09

When operating in Slave Mode, the SPI processes data bits on the clock provided on the SPI
clock pin (SPCK).

The SPI waits for NSS to go active before receiving the serial clock from an external master.
When NSS falls, the clock is validated on the serializer, which processes the number of bits
defined by the BITS field of the Chip Select Register 0 (CSRO0). These bits are processed follow-
ing a phase and a polarity defined respectively by the NCPHA and CPOL bits of the CSR0. Note
that BITS, CPOL and NCPHA of the other Chip Select Registers have no effect when the SPI is
programmed in Slave Mode.

The bits are shifted out on the MISO line and sampled on the MOSI line.

When all the bits are processed, the received data is transferred in the Receive Data Register
and the RDREF bit rises. If RDRF is already high when the data is transferred, the Overrun bit
rises and the data transfer to RDR is aborted.

When a transfer starts, the data shifted out is the data present in the Shift Register. If no data
has been written in the Transmit Data Register (TDR), the last data received is transferred. If no
data has been received since the last reset, all bits are transmitted low, as the Shift Register
resets at 0.

When a first data is written in TDR, it is transferred immediately in the Shift Register and the
TDRE bit rises. If new data is written, it remains in TDR until a transfer occurs, i.e. NSS falls and
there is a valid clock on the SPCK pin. When the transfer occurs, the last data written in TDR is
transferred in the Shift Register and the TDRE bit rises. This enables frequent updates of critical
variables with single transfers.

Then, a new data is loaded in the Shift Register from the Transmit Data Register. In case no
character is ready to be transmitted, i.e. no character has been written in TDR since the last load
from TDR to the Shift Register, the Shift Register is not modified and the last received character
is retransmitted.

Figure 20-9 shows a block diagram of the SPI when operating in Slave Mode.

Alm L 306

Y 5

AT32AP7000

Figure 20-9. Slave Mode Functional Block Diagram

NSS | I {>¢ SPI
Clock

[sPiEN]
[SPIENS
[spDis_]
SPI_CSRO
BITS SPI_RDR - RDRF
NCPHA [RD | OVRES

CPOL T
I
MSB

mosi [] LSB Shift Register] wso

A

SPI_TDR

[FLOoAD | 1D —| TDRE |

AIMEL 307

Y 5

32003M-AVR32-09/09

20.8 Serial Peripheral Interface (SPI) User Interface

Table 20-3. SPI Register Mapping

Offset Register Register Name Access Reset
0x00 Control Register CR Write-only
0x04 Mode Register MR Read/Write 0x0
0x08 Receive Data Register RDR Read-only 0x0
0x0C Transmit Data Register TDR Write-only -
0x10 Status Register SR Read-only 0x000000F0
0x14 Interrupt Enable Register IER Write-only ---
0x18 Interrupt Disable Register IDR Write-only
0x1C Interrupt Mask Register IMR Read-only 0x0

0x20 - 0x2C Reserved
0x30 Chip Select Register 0 CSRO Read/Write 0x0
0x34 Chip Select Register 1 CSR1 Read/Write 0x0
0x38 Chip Select Register 2 CSR2 Read/Write 0x0
0x3C Chip Select Register 3 CSR3 Read/Write 0x0
0x004C - 0xO0F8 | Reserved - - -
0x00FC Version Register VERSION Read-only ox- M
0x100 - 0x124 Reserved for the PDC

Note: 1. Values in the Version Register vary with the version of the IP block implementation.

AIMEL 308

32003M-AVR32-09/09 I ©

20.8.1 SPI Control Register

Name: CR

Access Type: Write-only
31 30 29 28 27 26 25 24

| - | - - - | - - | - | LASTXFER |
23 22 21 20 19 18 17 16

I — - S R I B
15 14 13 12 11 10 9 8

I - R T]
7 6 5 4 3 2 1 0

| swmrsT | — - - | - — | spibis | sPEN |

e SPIEN: SPI Enable
0 = No effect.

1 = Enables the SPI to transfer and receive data.

* SPIDIS: SPI Disable
0 = No effect.

1 = Disables the SPI.

As soon as SPDIS is set, SPI finishes its transfer.

All pins are set in input mode and no data is received or transmitted.

If a transfer is in progress, the transfer is finished before the SPI is disabled.

If both SPIEN and SPIDIS are equal to one when the control register is written, the SPI is disabled.

e SWRST: SPI Software Reset

0 = No effect.

1 = Reset the SPI. A software-triggered hardware reset of the SPI interface is performed.
The SPl is in slave mode after a software reset.
PDC channels are not affected by software reset.

e LASTXFER: Last Transfer

0 = No effect.

1 = The current NPCS will be deasserted after the character written in TD has been transferred. When CSAAT is set, this
allows to close the communication with the current serial peripheral by raising the corresponding NPCS line as soon as TD
transfer has completed.

32003M-AVR32-09/09

ATMEL

Y 5

309

20.8.2 SPI Mode Register

Name: MR

Access Type: Read/Write
31 30 29 28 27 26 25 24

| DLYBCS |
23 22 21 20 19 18 17 16

| - - - | - | PCS |
15 14 13 12 11 10 9 8

- - S I IS R]
7 6 5 4 3 2 1 0

| LLB - - | mopbFDis | FDiv [PCSDEC | PS MSTR |

* MSTR: Master/Slave Mode
0 = SPlis in Slave mode.

1 = SPl is in Master mode.

* PS: Peripheral Select

0 = Fixed Peripheral Select.
1 = Variable Peripheral Select.

* PCSDEC: Chip Select Decode
0 = The chip selects are directly connected to a peripheral device.

1 = The four chip select lines are connected to a 4- to 16-bit decoder.

When PCSDEC equals one, up to 15 Chip Select signals can be generated with the four lines using an external 4- to 16-bit
decoder. The Chip Select Registers define the characteristics of the 15 chip selects according to the following rules:

CSRO defines peripheral chip select signals 0 to 3.

CSR1 defines peripheral chip select signals 4 to 7.

CSR2 defines peripheral chip select signals 8 to 11.

CSR3 defines peripheral chip select signals 12 to 14.

* FDIV: Clock Selection

0 = The SPI operates at MCK.
1 = The SPI operates at MCK/N.

* MODFDIS: Mode Fault Detection
0 = Mode fault detection is enabled.

1 = Mode fault detection is disabled.

e LLB: Local Loopback Enable
0 = Local loopback path disabled.

1 = Local loopback path enabled.

LLB controls the local loopback on the data serializer for testing in Master Mode only. MISO is internally connected to

MOSI.

32003M-AVR32-09/09

ATMEL

Y 5

310

* PCS: Peripheral Chip Select
This field is only used if Fixed Peripheral Select is active (PS = 0).

If PCSDEC = 0:
PCS = xxx0 NPCS[3:0] = 1110
PCS = xx01 NPCS[3:0] = 1101
PCS = x011 NPCS[3:0] = 1011
PCS = 0111 NPCS[3:0] = 0111
PCS = 1111 forbidden (no peripheral is selected)

(x = don’t care)
If PCSDEC = 1:
NPCS[3:0] output signals = PCS.

¢ DLYBCS: Delay Between Chip Selects

This field defines the delay from NPCS inactive to the activation of another NPCS. The DLYBCS time guarantees non-over-
lapping chip selects and solves bus contentions in case of peripherals having long data float times.

If DLYBCS is less than or equal to six, six MCK periods (or 6*N MCK periods if FDIV is set) will be inserted by default.

Otherwise, the following equation determines the delay:

If FDIV is 0:
Delay Between Chip Selects = DLYBCS
MCK
If FDIV is 1:
Delay Between Chip Selects = DLYBCSxN
MCK

Alm L 311

32003M-AVR32-09/09 I ©

20.8.3 SPI Receive Data Register

Name: RDR

Access Type: Read-only
31 30 29 28 27 26 25 24

I I I B R - - —]
23 22 21 20 19 18 17 16

I - I - I - I - I PCS |
15 14 13 12 11 10 9 8

I RD |
7 6 5 4 3 2 1 0

I RD |

* RD: Receive Data
Data received by the SPI Interface is stored in this register right-justified. Unused bits read zero.
¢ PCS: Peripheral Chip Select

In Master Mode only, these bits indicate the value on the NPCS pins at the end of a transfer. Otherwise, these bits read
zero.

Alm L 312

32003M-AVR32-09/09 I ©

20.8.4 SPI Transmit Data Register

Name: TDR

Access Type: Write-only
31 30 29 28 27 26 25 24

| - | - | - | - | - - - | LASTXFER |
23 22 21 20 19 18 17 16

| - | - | - | - | PCS |
15 14 13 12 11 10 9 8

I D |
7 6 5 4 3 2 1 0

I i) |

¢ TD: Transmit Data

Data to be transmitted by the SPI Interface is stored in this register. Information to be transmitted must be written to the
transmit data register in a right-justified format.

* PCS: Peripheral Chip Select

This field is only used if Variable Peripheral Select is active (PS = 1).

If PCSDEC = 0:
PCS = xxx0 NPCS[3:0] = 1110
PCS = xx01 NPCS[3:0] = 1101
PCS = x011 NPCS[3:0] = 1011
PCS =0111 NPCS[3:0] = 0111
PCS =1111 forbidden (no peripheral is selected)

(x = don’t care)
If PCSDEC = 1:
NPCS[3:0] output signals = PCS

e LASTXFER: Last Transfer
0 = No effect.

1 = The current NPCS will be deasserted after the character written in TD has been transferred. When CSAAT is set, this
allows to close the communication with the current serial peripheral by raising the corresponding NPCS line as soon as TD
transfer has completed.

This field is only used if Variable Peripheral Select is active (PS = 1).

Alm L 313

32003M-AVR32-09/09 I ©

20.8.5 SPI Status Register

Name: SR

Access Type: Read-only
31 30 29 28 27 26 25 24

. - r - ¢ - - [- [- | - [-]
23 22 21 20 19 18 17 16

. - r - ¢ - - [- [- | - | sPENs |
15 14 13 12 11 10 9 8

| - | - | - | - | - | - | TXEMPTY [NSSR |
7 6 5 4 3 2 1 0

| t™xBUFE | RxBUFF | ENDTX | ENDRX | oOvrRes | wmMobF | TDRE [RDRF |

* RDRF: Receive Data Register Full
0 = No data has been received since the last read of RDR

1 = Data has been received and the received data has been transferred from the serializer to RDR since the last read of
RDR.

¢ TDRE: Transmit Data Register Empty
0 = Data has been written to TDR and not yet transferred to the serializer.

1 = The last data written in the Transmit Data Register has been transferred to the serializer.
TDRE equals zero when the SPI is disabled or at reset. The SPI enable command sets this bit to one.

¢ MODF: Mode Fault Error
0 = No Mode Fault has been detected since the last read of SR.

1 = A Mode Fault occurred since the last read of the SR.

¢ OVRES: Overrun Error Status
0 = No overrun has been detected since the last read of SR.

1 = An overrun has occurred since the last read of SR.
An overrun occurs when RDR is loaded at least twice from the serializer since the last read of the RDR.

* ENDRX: End of RX buffer
0 = The Receive Counter Register has not reached 0 since the last write in RCR or RNCR.

1 = The Receive Counter Register has reached 0 since the last write in RCR or RNCR.

¢ ENDTX: End of TX buffer
0 = The Transmit Counter Register has not reached 0 since the last write in TCR or TNCR.

1 = The Transmit Counter Register has reached 0 since the last write in TCR or TNCR.

e RXBUFF: RX Buffer Full
0 = RCR or RNCR has a value other than 0.

1 = Both RCR and RNCR has a value of 0.

¢ TXBUFE: TX Buffer Empty
0 = TCR or TNCR has a value other than 0.

Alm L 314

32003M-AVR32-09/09 I ©

1 = Both TCR and TNCR has a value of 0.

* NSSR: NSS Rising
0 = No rising edge detected on NSS pin since last read.

1 = Arising edge occurred on NSS pin since last read.

e TXEMPTY: Transmission Registers Empty
0 = As soon as data is written in TDR.

1 = TDR and internal shifter are empty. If a transfer delay has been defined, TXEMPTY is set after the completion of such
delay.

¢ SPIENS: SPI Enable Status
0 = SPIl is disabled.

1 = SPl is enabled.

Alm L 315

32003M-AVR32-09/09 I ©

20.8.6 SPI Interrupt Enable Register
Name: IER
Access Type: Write-only
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| _ | Z _ — [— - | TXEMPTY | NSSR |
7 6 5 4 3 2 1 0
| TXBUFE | RXBUFF ENDTX ENDRX | OVRES MODF | TDRE | RDRF |
* RDRF: Receive Data Register Full Interrupt Enable
e TDRE: SPI Transmit Data Register Empty Interrupt Enable
¢ MODF: Mode Fault Error Interrupt Enable
e OVRES: Overrun Error Interrupt Enable
* ENDRX: End of Receive Buffer Interrupt Enable
¢ ENDTX: End of Transmit Buffer Interrupt Enable
* RXBUFF: Receive Buffer Full Interrupt Enable
¢ TXBUFE: Transmit Buffer Empty Interrupt Enable
e TXEMPTY: Transmission Registers Empty Enable
* NSSR: NSS Rising Interrupt Enable
0 = No effect.
1 = Enables the corresponding interrupt.
ATMEL 316
Y)

32003M-AVR32-09/09

20.8.7 SPI Interrupt Disable Register
Name: IDR
Access Type: Write-only
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| _ | Z _ — [— - | TXEMPTY | NSSR |
7 6 5 4 3 2 1 0
| TXBUFE | RXBUFF ENDTX ENDRX | OVRES MODF | TDRE | RDRF |
* RDRF: Receive Data Register Full Interrupt Disable
e TDRE: SPI Transmit Data Register Empty Interrupt Disable
¢ MODF: Mode Fault Error Interrupt Disable
e OVRES: Overrun Error Interrupt Disable
* ENDRX: End of Receive Buffer Interrupt Disable
¢ ENDTX: End of Transmit Buffer Interrupt Disable
* RXBUFF: Receive Buffer Full Interrupt Disable
¢ TXBUFE: Transmit Buffer Empty Interrupt Disable
e TXEMPTY: Transmission Registers Empty Disable
* NSSR: NSS Rising Interrupt Disable
0 = No effect.
1 = Disables the corresponding interrupt.
ATMEL 317
Y)

32003M-AVR32-09/09

20.8.8 SPI Interrupt Mask Register

Name: IMR

Access Type: Read-only
31 30 29 28 27 26 25 24

I - S S I B
23 22 21 20 19 18 17 16

I - S S I B
15 14 13 12 11 10 9 8

| - | - - - | - - | TXEmpTY | NSSR |
7 6 5 4 3 2 1 0

| TXBUFE | RXBUFF ENDTX ENDRX | OVRES MODF | TDRE | RDRF |

* RDRF: Receive Data Register Full Interrupt Mask
e TDRE: SPI Transmit Data Register Empty Interrupt Mask

¢ MODF: Mode Fault Error Interrupt Mask

e OVRES: Overrun Error Interrupt Mask

* ENDRX: End of Receive Buffer Interrupt Mask

¢ ENDTX: End of Transmit Buffer Interrupt Mask
¢ RXBUFF: Receive Buffer Full Interrupt Mask

¢ TXBUFE: Transmit Buffer Empty Interrupt Mask
e TXEMPTY: Transmission Registers Empty Mask
* NSSR: NSS Rising Interrupt Mask

0 = The corresponding interrupt is not enabled.

1 = The corresponding interrupt is enabled.

32003M-AVR32-09/09

ATMEL

Y 5

318

20.8.9 SPI Chip Select Register

Name: CSRO... CSR3

Access Type: Read/Write
31 30 29 28 27 26 25 24

| DLYBCT |
23 22 21 20 19 18 17 16

| DLYBS |
15 14 13 12 11 10 9 8

| SCBR |
7 6 5 4 3 2 1 0

| BITS CSAAT - NCPHA cPoL |

e CPOL: Clock Polarity
0 = The inactive state value of SPCK is logic level zero.

1 = The inactive state value of SPCK is logic level one.

CPOL is used to determine the inactive state value of the serial clock (SPCK). It is used with NCPHA to produce the
required clock/data relationship between master and slave devices.

¢ NCPHA: Clock Phase
0 = Data is changed on the leading edge of SPCK and captured on the following edge of SPCK.

1 = Data is captured on the leading edge of SPCK and changed on the following edge of SPCK.

NCPHA determines which edge of SPCK causes data to change and which edge causes data to be captured. NCPHA is
used with CPOL to produce the required clock/data relationship between master and slave devices.

e CSAAT: Chip Select Active After Transfer
0 = The Peripheral Chip Select Line rises as soon as the last transfer is achieved.

1 = The Peripheral Chip Select does not rise after the last transfer is achieved. It remains active until a new transfer is
requested on a different chip select.
e BITS: Bits Per Transfer

The BITS field determines the number of data bits transferred. Reserved values should not be used, see Table 20-4 on
page 320.

Alm L 319

32003M-AVR32-09/09 I ©

Table 20-4. BITS, Bits Per Transfer

BITS Bits Per Transfer
0000 8
0001 9
0010 10
0011 11
0100 12
0101 13
0110 14
0111 15
1000 16
1001 Reserved
1010 Reserved
1011 Reserved
1100 Reserved
1101 Reserved
1110 Reserved
1111 Reserved

e SCBR: Serial Clock Baud Rate

In Master Mode, the SPI Interface uses a modulus counter to derive the SPCK baud rate from the Master Clock MCK. The
Baud rate is selected by writing a value from 1 to 255 in the SCBR field. The following equations determine the SPCK baud
rate:

If FDIV is O:
SPCK Baudrate = MCK
SCBR
If FDIV is 1:
SPCK Baudrate = __MCK
(N x SCBR)

Note: N =32

Programming the SCBR field at O is forbidden. Triggering a transfer while SCBR is at 0 can lead to unpredictable results.
At reset, SCBR is 0 and the user has to program it at a valid value before performing the first transfer.

e DLYBS: Delay Before SPCK
This field defines the delay from NPCS valid to the first valid SPCK transition.

When DLYBS equals zero, the NPCS valid to SPCK transition is 1/2 the SPCK clock period.

Alm L 320

32003M-AVR32-09/09 I ©

Otherwise, the following equations determine the delay:

If FDIV is O:
Delay Before SPCK = 2LYBS
MCK
If FDIV is 1:
Delay Before SPCK = Y DLYBS
MCK

Note: N =32

e DLYBCT: Delay Between Consecutive Transfers
This field defines the delay between two consecutive transfers with the same peripheral without removing the chip select.
The delay is always inserted after each transfer and before removing the chip select if needed.

When DLYBCT equals zero, no delay between consecutive transfers is inserted and the clock keeps its duty cycle over the
character transfers.

Otherwise, the following equation determines the delay:

If FDIV is O:

32 xDLYBCT+ SCBR

Delay Between Consecutive Transfers
MCK 2MCK

If FDIV is 1:

32 ><N><DLYBCT+N>< SCBR

Delay Between Consecutive Transfers =
MCK 2MCK

Note: N=32

Alm L 321

32003M-AVR32-09/09 I ©

21. Two-wire Interface (TWI)

Rev: 1.8.0.1

21.1 Features
* Compatible with Philips’ I°C protocol
* One, Two or Three Bytes for Slave Address
¢ Sequential Read/Write Operations

21.2 Description

The Two-wire Interface (TWI) interconnects components on a unique two-wire bus, made up of
one clock line and one data line with speeds of up to 400 Kbits per second, based on a byte-ori-
ented transfer format. It can be used with any Atmel two-wire bus Serial EEPROM. The TWI is
programmable as a master with sequential or single-byte access. A configurable baud rate gen-
erator permits the output data rate to be adapted to a wide range of core clock frequencies.

21.3 Block Diagram

Figure 21-1. Block Diagram

Peripheral Bus
Bridge

| — < > <—>|:| TWCK
—{]

PIO
Two-wire > TWD
Power MCK Interface
Manager
T™WI
Interrupt »| Interrupt
Controller
21.4 Application Block Diagram
Figure 21-2. Application Block Diagram
VDD
R R
TWD
Host with X ¢ >
TWI
Interface TWCK >
AT24LC16 AT24LC16 LCD Controller
U1 U2 U3
Slave 1 Slave 2 Slave 3

Alm L 322

32003M-AVR32-09/09 I ©

2141 I/0 Lines Description

Table 21-1. 1/O Lines Description

Pin Name Pin Description Type
TWD Two-wire Serial Data Input/Output
TWCK Two-wire Serial Clock Input/Output

21.5 Product Dependencies

21.5.1 I/O Lines
Both TWD and TWCK are bi-directional lines, connected to a positive supply voltage via a cur-
rent source or pull-up resistor (see Figure 21-2 on page 322). When the bus is free, both lines
are high. The output stages of devices connected to the bus must have an open-drain or open-
collector to perform the wired-AND function.

TWD and TWCK pins may be multiplexed with PIO lines. To enable the TWI, the programmer
must program the PIO controller to dedicate TWD and TWCK as peripheral lines.

21.5.2 Power Management
The TWI clock is generated by the power manager. Before using the TWI, the programmer must
ensure that the TWI clock is enabled in the power manager.

In the TWI description, Master Clock (MCK) is the clock of the peripheral bus to which the TWI is
connected.

21.5.3 Interrupt
The TWI interface has an interrupt line connected to the interrupt controller. In order to handle
interrupts, the interrupt controller must be programmed before configuring the TWI.

Alm L 323

32003M-AVR32-09/09 I ©

21.6 Functional Description

21.6.1 Transfer format

The data put on the TWD line must be 8 bits long. Data is transferred MSB first; each byte must
be followed by an acknowledgement. The number of bytes per transfer is unlimited (see Figure
21-4 on page 324).

Each transfer begins with a START condition and terminates with a STOP condition (see Figure
21-3 on page 324).

*A high-to-low transition on the TWD line while TWCK is high defines the START condition.
*A low-to-high transition on the TWD line while TWCK is high defines a STOP condition.

Figure 21-3. START and STOP Conditions

Start Address R/W Ack Data Ack Data Ack Stop

21.6.2 Modes of Operation
The TWI has two modes of operation:

*Master transmitter mode
Master receiver mode

The TWI Control Register (CR) allows configuration of the interface in Master Mode. In this
mode, it generates the clock according to the value programmed in the Clock Waveform Gener-
ator Register (CWGR). This register defines the TWCK signal completely, enabling the interface
to be adapted to a wide range of clocks.

21.6.3 Transmitting Data
After the master initiates a Start condition, it sends a 7-bit slave address, configured in the Mas-
ter Mode register (DADR in MMR), to notify the slave device. The bit following the slave address
indicates the transfer direction (write or read). If this bit is 0, it indicates a write operation (trans-
mit operation). If the bit is 1, it indicates a request for data read (receive operation).

The TWI transfers require the slave to acknowledge each received byte. During the acknowl-
edge clock pulse, the master releases the data line (HIGH), enabling the slave to pull it down in
order to generate the acknowledge. The master polls the data line during this clock pulse and
sets the NAK bit in the status register if the slave does not acknowledge the byte. As with the

Alm L 324

32003M-AVR32-09/09 I ©

other status bits, an interrupt can be generated if enabled in the interrupt enable register (IER).
After writing in the transmit-holding register (THR), setting the START bit in the control register
starts the transmission. The data is shifted in the internal shifter and when an acknowledge is
detected, the TXRDY bit is set until a new write in the THR (see Figure 21-6 below). The master
generates a stop condition to end the transfer.

The read sequence begins by setting the START bit. When the RXRDY bit is set in the status
register, a character has been received in the receive-holding register (RHR). The RXRDY bit is
reset when reading the RHR.

The TWI interface performs various transfer formats (7-bit slave address, 10-bit slave address).
The three internal address bytes are configurable through the Master Mode register (MMR). If
the slave device supports only a 7-bit address, IADRSZ must be set to 0. For a slave address
higher than 7 bits, the user must configure the address size (IADRSZ) and set the other slave
address bits in the internal address register (IADR).

Figure 21-5. Master Write with One, Two or Three Bytes Internal Address and One Data Byte
Three bytes internal address

TN 6 D O € G € G € G € €5 € &

Two bytes internal address

NENE ED O € G €@ (G € ST € &

One byte internal address

o X5 X_0ror S o S Ao XA

Figure 21-6. Master Write with One Byte Internal Address and Multiple Data Bytes

o X oon X X orre X IOK o XX | X o XK o X

TXCOMP |

/1

Write THR

TXRDY—| x

Write THR

[N . |

Write THR Write THR

Figure 21-7. Master Read with One, Two or Three Bytes Internal Address and One Data Byte

Three bytes internal address
wo X8 X 0aoR X w X A XoReze)X A X moriss) X A X morzo X a X s X par X 8 X A)

Two bytes internal address

oara_ XN X P

NP ED LT €D € () € D €D € G € € €I € O

One byte internal address

6D ST) €Y CE €D 6 I 6 € Gl € G

32003M-AVR32-09/09

Alm L 325

Y 5

AT32AP7000

Figure 21-8. Master Read with One Byte Internal Address and Multiple Data Bytes

N ED D D O T €9 C I G € G G € €
TXCOMPT\

)) [—
Write START Bit l Write STOP Bit l
RXRDY I/—| /l
Read RHR Read RHR

¢S = Start

*P = Stop

oW = Write
*R = Read

*A = Acknowledge

*N = Not Acknowledge
*DADR= Device Address
*|ADR = Internal Address

Figure 21-9 below shows a byte write to an Atmel AT24LC512 EEPROM. This demonstrates the
use of internal addresses to access the device.

Figure 21-9. Internal Address Usage

S w
T R S
A . | T
R Device T FIRST SECOND o
T Address E WORD ADDRESS WORD ADDRESS DATA P
D_l_l_l |0|_I—| | | LI I B B | | | LI I B B | | | LI I B B | | |_|
1 T T | T T | T T |

M LRA M A LA A

S S/ C S C SC C

B BWK B K BK K

Alm L 326

32003M-AVR32-09/09 I ©

AT32AP7000

21.6.4 Read/Write Flowcharts

The following flowcharts shown in Figure 21-10 on page 327 and in Figure 21-11 on page 328
give examples for read and write operations in Master Mode. A polling or interrupt method can
be used to check the status bits. The interrupt method requires that the interrupt enable register
(IER) be configured first.

Figure 21-10. TWI Write in Master Mode

START

Set TWI clock:
CWGR = clock

Set the control register:
- Master enable
CR =MSEN

Set the Master Mode register:
- Device slave address
- Internal address size
- Transfer direction bit
Write ==> bit MREAD =0

Internal address size = 0?7

Set theinternal address
IADR = address

Yes

Load transmit register
THR = Data to send

Read status register

THR = data to send

Data to send?
Yes

Read status register

Alm L 327

32003M-AVR32-09/09 I ©

Figure 21-11. TWI Read in Master Mode

START

Set TWI clock:
CWGR = clock

Set the control register:
- Master enable
CR = MSEN

Set the Master Mode register:
- Device slave address
- Internal address size
- Transfer direction bit
Read ==> bit MREAD =0

Internal address size = 0?

Set the internal address
IADR = address

Yes

Start the transfer
CR = START

Read status register

RXRDY = 0?

Read RHR

Data to read?
Yes

Stop the transfer
CR = STOP

Read status register

Yes

AIMEL 328

32003M-AVR32-09/09 I ©

21.7 TWI User Interface

21.71 Register Mapping

Table 21-2. Two-wire Interface (TWI) User Interface

Offset Register Name Access Reset Value
0x0000 Control Register CR Write-only N/A
0x0004 Master Mode Register MMR Read/Write 0x0000
0x0008 Reserved - - -
0x000C Internal Address Register IADR Read/Write 0x0000
0x0010 Clock Waveform Generator Register CWGR Read/Write 0x0000
0x0020 Status Register SR Read-only 0x0008
0x0024 Interrupt Enable Register IER Write-only N/A
0x0028 Interrupt Disable Register IDR Write-only N/A
0x002C Interrupt Mask Register IMR Read-only 0x0000
0x0030 Receive Holding Register RHR Read-only 0x0000
0x0034 Transmit Holding Register THR Read/Write 0x0000

AIMEL 329

32003M-AVR32-09/09 I ©

21.7.2 TWI Control Register

Register Name: CR
Access Type: Write-only

31 30 29 28 27 26 25 24
. - r - r - -+ - 1 - = [= |
23 22 21 20 19 18 17 16
. - r - r - -+ - 1 - { - [- |
15 14 13 12 11 10 9 8
. - r - r - -+ - {r - ¢ - [- |
7 6 5 4 3 2 1 0
|SWRST| - | - | - | MSDIS | MSEN | STOP | START |

e START: Send a START Condition
0 = No effect.
1 = A frame beginning with a START bit is transmitted according to the settings in the mode register.

This action is necessary when the TWI peripheral wants to read data from a slave. When configured in Master Mode with a
write operation, a frame is sent with the mode register as soon as the user writes a character in the holding register.

e STOP: Send a STOP Condition

0 = No effect.

1 = STOP Condition is sent just after completing the current byte transmission in master read or write mode.
In single data byte master read or write, the START and STOP must both be set.

In multiple data bytes master read or write, the STOP must be set before ACK/NACK bit transmission.

In master read mode, if a NACK bit is received, the STOP is automatically performed.

In multiple data write operation, when both THR and shift register are empty, a STOP condition is automatically sent.
e MSEN: TWI Master Transfer Enabled

0 = No effect.

1 = If MSDIS = 0, the master data transfer is enabled.

e MSDIS: TWI Master Transfer Disabled

0 = No effect.

1 = The master data transfer is disabled, all pending data is transmitted. The shifter and holding characters (if they contain
data) are transmitted in case of write operation. In read operation, the character being transferred must be completely
received before disabling.

e SWRST: Software Reset
0 = No effect.
1 = Equivalent to a system reset.

Alm L 330

32003M-AVR32-09/09 I ©

21,73 TWI Master Mode Register

Register Name: MMR
Address Type: Read/Write
31 30 29 28 27 26 25 24
T - — 1 - T - - - —]
23 22 21 20 19 18 17 16
| - | DADR |
15 14 13 12 11 10 9 8
| - | - | - | MREAD | - | - | IADRSZ |
7 6 5 4 3 2 1 0
. - r - ¢ - - [- [- | - - |
¢ |ADRSZ: Internal Device Address Size
IADRSZ[9:8]
0 0 No internal device address (Byte command protocol)
0 1 One-byte internal device address
1 0 Two-byte internal device address
1 1 Three-byte internal device address

e MREAD: Master Read Direction

0 = Master write direction.

1 = Master read direction.

¢ DADR: Device Address

The device address is used in Master Mode to access slave devices in read or write mode.

AIMEL 331

32003M-AVR32-09/09 I ©

21.74 TWI Internal Address Register
Register Name: IADR
Access Type: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
| IADR |
15 14 13 12 11 10 9 8
| IADR |
7 6 5 4 3 2 1 0
IADR |

¢ |ADR: Internal Address
0, 1, 2 or 3 bytes depending on IADRSZ.

— Low significant byte address in 10-bit mode addresses.

32003M-AVR32-09/09

ATMEL

332

21.75 TWI Clock Waveform Generator Register

Register Name: CWGR
Access Type: Read/Write
31 30 29 28 27 26 25 24
I R — 1= - - —]
23 22 21 20 19 18 17 16
| - | - | - - | - CKDIV |
15 14 13 12 11 10 9 8
| CHDIV |
7 6 5 4 3 2 1 0
CLDIV |

e CLDIV: Clock Low Divider
The SCL low period is defined as follows:

CKDIV

Tp, = (CLDIV x 2%y 4 3) 5 7

e CHDIV: Clock High Divider
The SCL high period is defined as follows:

CKDIV

Thign = ((CHDIV x 2)+3)x Tyox

e CKDIV: Clock Divider

The CKDIV is used to increase both SCL high and low periods.

32003M-AVR32-09/09

ATMEL

Y 5

333

21.7.6 TWI Status Register

Register Name: SR

Access Type: Read-only
31 30 29 28 27 26 25 24

. - - ¢ - { - [- [- | N
23 22 21 20 19 18 17 16

. - r - ¢ - - [- [- | S
15 14 13 12 11 10 9 8

. - - ¢ - - [- [- /| - [Nack |
7 6 5 4 3 2 1 0

| - | - | - | - | - | TXRDY | RXRDY | TXCOMP |

e TXCOMP: Transmission Completed
0 = In master, during the length of the current frame. In slave, from START received to STOP received.

1 = When both holding and shift registers are empty and STOP condition has been sent (in Master), or when MSEN is set
(enable TWI).

¢ RXRDY: Receive Holding Register Ready

0 = No character has been received since the last RHR read operation.

1 = A byte has been received in theRHR since the last read.

¢ TXRDY: Transmit Holding Register Ready

0 = The transmit holding register has not been transferred into shift register. Set to 0 when writing into THR register.

1 = As soon as data byte is transferred from THR to internal shifter or if a NACK error is detected, TXRDY is set at the
same time as TXCOMP and NACK. TXRDY is also set when MSEN is set (enable TWI).

¢ NACK: Not Acknowledged
0 = Each data byte has been correctly received by the far-end side TWI slave component.
1 = A data byte has not been acknowledged by the slave component. Set at the same time as TXCOMP. Reset after read.

Alm L 334

32003M-AVR32-09/09 I ©

21.7.7 TWI Interrupt Enable Register

Register Name: IER

Access Type: Write-only
31 30 29 28 27 26 25 24

. - r - r - [- [- - - [-]
23 22 21 20 19 18 17 16

r - r - r - [- [- S N
15 14 13 12 11 10 9 8

r - r - r - [- [- S R
7 6 5 4 2 1 0

| - | - | - | - | - TXRDY | RXRDY | TXCOMP |

e TXCOMP: Transmission Completed

¢ RXRDY: Receive Holding Register Ready
e TXRDY: Transmit Holding Register Ready
e NACK: Not Acknowledge

0 = No effect.

1 = Enables the corresponding interrupt.

32003M-AVR32-09/09

ATMEL

335

21.7.8 TWI Interrupt Disable Register

Register Name: IDR

Access Type: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - - I - - |
23 22 21 20 19 18 17 16

I - I - I - I - I - - I - - |
15 14 13 12 11 10 9 8

I - I - I - I - I - - I - [Nack |
7 6 5 4 3 2 1 0

| - | - | - | - | - TXRDY | RXRDY | TXCOMP |

e TXCOMP: Transmission Completed

¢ RXRDY: Receive Holding Register Ready
e TXRDY: Transmit Holding Register Ready
¢ NACK: Not Acknowledge

0 = No effect.

1 = Disables the corresponding interrupt.

32003M-AVR32-09/09

ATMEL

336

21.7.9 TWI Interrupt Mask Register

Register Name: IMR

Access Type: Read-only
31 30 29 28 27 26 25 24

r - r - r - [- [- - | N
23 22 21 20 19 18 17 16

r - r - - [- [- - | S
15 14 13 12 11 10 9 8

r - r - r - [- [- - | - [Nack |
7 6 5 4 3 2 1 0

| - | - | - | - | - TXRDY | RXRDY | TXCOMP |

e TXCOMP: Transmission Completed

¢ RXRDY: Receive Holding Register Ready
e TXRDY: Transmit Holding Register Ready
¢ NACK: Not Acknowledge

0 = The corresponding interrupt is disabled.

1 = The corresponding interrupt is enabled.

32003M-AVR32-09/09

ATMEL

337

21.7.10 TWI Receive Holding Register

Register Name: RHR

Access Type: Read-only
31 30 29 28 27 26 25 24

I - — 1= - - —]
23 22 21 20 19 18 17 16

I - — 1 - - - —]
15 14 13 12 11 10

I - — T _- - - —]
7 6 5 4 3 2 1 0

RXDATA

* RXDATA: Master or Slave Receive Holding Data

32003M-AVR32-09/09

ATMEL

338

21.7.11 TWI Transmit Holding Register

Register Name: THR

Access Type: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - - |
7 6 5 4 3 2 1 0

| TXDATA |

e TXDATA: Master or Slave Transmit Holding Data

A ||'|E|,® 339

32003M-AVR32-09/09

22. PS/2 Module (PSIF)

Rev: 1.0.0.2
22.1 Features

PS/2 Host

* Receive and transmit capability

¢ Parity generation and error detection
¢ Overrun error detection

22.2 Description

The PS/2 module provides host functionality allowing the MCU to interface PS/2 devices such as
keyboard and mice. The module is capable of both host-to-device and device-to-host
communication.

22.3 Product Dependencies
22.3.1 I/O Lines

The PS/2 may be multiplexed with PIO lines. The programmer must first program the P1O con-
troller to give control of the pins to the PS/2 module.

22.3.2 Power Management

The clock for the PS/2 module is generated by the power manager. The programmer must
ensure that the PS/2 clock is enabled in the power manager before using the PS/2 module.

22.3.3 Interrupt

The PS/2 module has an interrupt line connected to the interrupt controller. Handling the PS/2
interrupt requires programming the interrupt controller before configuring the PS/2 module.

22.4 The PS/2 Protocol

The PS/2 protocol is a bidirectional synchronous serial communication protocol. It connects a
single master - referred to as the ‘host’ - to a single slave - referred to as the ‘device’. Communi-
cation is done through two lines called ‘data’ and ‘clock’. Both of these must be open-drain or
open-collector with a pullup resistor to perform a wired-AND function. When the bus is idle, both
lines are high.

The device always generates the clock signal, but the host may pull the clock low to inhibit trans-
fers. The clock frequency is in the range 10-16.7 kHz. Both the host and the slave may initiate a
transfer, but the host has ultimate control of the bus.

Data are transmitted one byte at a time in a frame consisting of 11-12 bits. The transfer format is
described in detail below.

2241 Device to host communication

The device can only initiate a transfer when the bus is idle. If the host at any time pulls the clock
low, the device must stop transferring data and prepare to receive data from the host.

The device transmits data using a 11-bit frame. The device writes a bit on the data line when the
clock is high, and the host reads the bit when the clock is low.

The format of the frame is:

Alm L 340

32003M-AVR32-09/09 I ©

cock [L L L L

DATA |

AT32AP7000

* 1 start bit - always O.

* 8 data bits, least significant bit first.
* 1 parity bit - odd parity.

¢ 1 stop bit - always 1.

Figure 22-1. Device to host transfer

AL X X [X

Start
Bit 0
Bit 1

T
Hr
Hr
H
H
H

Bit 5
Bit 6
Bit 7
Parity
Stop

Bit 2
Bit 3

22.4.2 Host to device communication

32003M-AVR32-09/09

Because the device always generates the clock, host to device communication is done differ-

ently than device to host communication.

* The host starts by inhibiting communication by pulling clock low for a minimum of 100
microseconds.

* Then applies a “request-to-send” by releasing clock and pulling data low.

The device must check for this state at least every 10 milliseconds. Once it detects a request-to-
send, it must start generating the clock and receive one frame of data. The host writes a data bit
when the clock is low, and the device reads the bit when the clock is high.

The format of the frame is:

* 1 start bit - always O.

* 8 data bits - least significant bit first.

* 1 parity bit - odd parity

* 1 stop bit - always one.

* 1 acknowledge bit - the device acknowledges by pulling data low.

Alm L 341

Y 5

Figure 22-2. Host to device transfer

CLOCK L L L L L]
DATA \ f X t X X X X X X R [

Host Clock
Host Data | £ X X X X X X X X y

Device Clock S s [A O I

Device Data

T

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Parity
Stop
Ack

Inhibit
Start

22.5 Functional Description

22.5.1 Prescaler

For all data transfers on the PS/2 bus, the device is responsible for generating the clock and
thus controlling the timing of the communications. When a host wants to initiate a transfer how-
ever, it needs to pull the clock line low for a given time (minimum 100pus). A clock prescaler
controls the timing of the transfer request pulse.

Before initiating host to device transfers, the programmer must write PSR (Prescale Register).
This value determines the length of the “transfer request” pulse and is found by:

PRSCV = Pulse length * PS/2 module frequency

According to the PS/2 specifications, the pulse length should be at least 100ps. The PS/2 mod-
ule frequency is the frequency of the peripheral bus to which the module is connected.

22.5.2 Receiving data

The receiver is enabled by writing the RXEN bit in CR (Control Register) to ‘1’. When enabled,
the receiver will continuously receive data transmitted by the device. The data is stored in RHR
(Receive Holding Register). When a byte has been received, the RXRDY bit in SR (Status Reg-

ister) is set.

For each received byte, the parity is calculated. If it doesn’t match the parity bit received from the
device, the PARITY bit in SR is set. The received byte should then be discarded.

If a received byte in RHR is not read before a new byte has been received, the overrun bit -
OVRUN in SR is set. The new data is stored in RHR overwriting the previously received byte.

22.5.3 Transmitting data

The transmitter is enabled by writing the TXEN bit in CR to ‘1’. When enabled, a data transfer to
the device will be started by writing the transmit data to THR (Transmit Holding Register). Any
ongoing transfer from the device will be aborted.

Alm L 342

32003M-AVR32-09/09 I ©

22.5.4 Interrupts

When the data written to THR has been transmitted to the device, the TXRDY bit in SR will be
set and a new value can be loaded into THR.

At the end of the transfer, the device should acknowledge the transfer by pulling the data line
low for one cycle. If an acknowledge is not detected, the NACK bit in SR will be set.

If the device fails to acknowledge the frame, the NACK bit in SR will be set. The software is
responsible for any retries.

All transfers from host to device are started by the host pulling the clock line low for at least
100ps. The programmer must ensure that the prescaler is programmed to generate correct
pulse length.

The PS/2 module can be configured to signal an interrupt when one of the bits in SR is set. The
interrupt is enabled by writing to IER (Interrupt Enable Register) and disabled by writing to IDR
(Interrupt Disable Register). The current setting of an interrupt line can be seen by reading IMR
(Interrupt Mask Register).

22.6 User Interface

Offset Register Register Name Access Reset
0x000 PS/2 Control Register 0 CRO Write-only -
0x004 PS/2 Receive Holding Register 0 RHRO Read-only 0x0
0x008 PS/2 Transmit Holding Register 0 THRO Write-only -
0x00C RESERVED - - -
0x010 PS/2 Status Register 0 SRO Read-only 0x0
0x014 PS/2 Interrupt Enable Register 0 IERO Write-only -
0x018 PS/2 Interrupt Disable Register 0 IDRO Write-only -
0x01C PS/2 Interrupt Mask Register 0 IMRO Read-only 0x0
0x020 RESERVED - - -
0x024 PS/2 Prescale Register 0 PSRO Read/Write 0x0
0x100 PS/2 Control Register 1 CR1 Write-only -
0x104 PS/2 Receive Holding Register 1 RHR1 Read-only 0x0
0x108 PS/2 Transmit Holding Register 1 THRA1 Write-only -
0x10C RESERVED - - -
0x110 PS/2 Status Register 1 SR1 Read-only 0x0
0x114 PS/2 Interrupt Enable Register 1 IER1 Write-only -
0x118 PS/2 Interrupt Disable Register 1 IDR1 Write-only -
0x11C PS/2 Interrupt Mask Register 1 IMR1 Read-only 0x0
0x120 RESERVED - - -
0x124 PS/2 Prescale Register 1 PSR1 Read/Write 0x0

32003M-AVR32-09/09

AIMEL 343

Y 5

22.6.1 PS/2 Control Register

Name: CRO, CR1

Access Type: Write-only
31 30 29 28 27 26 25 24

. - ! - r - r - r - - ;@ - [- |
23 22 21 20 19 18 17 16

. - - r - tr - r -t -} - [} - |
15 14 13 12 11 10 9 8

‘ SWRST‘ - ‘ - ‘ - ‘ - ‘ - ‘ TXDIS ‘ TXEN |
7 6 5 4 3 2 1 0

| : | : | : | : | : | : | RXDIS | RXEN |

SWRST: Software Reset
Writing this strobe causes a reset of the PS/2 interface module. Data shift registers are cleared and configuration registers are
reset to default values.
TXDIS: Transmitter Disable
0: No effect.
1: Disables the transmitter.
TXEN: Transmitter Enable
0: No effect.
1: Enables the transmitter if TXDIS=0.
RXDIS: Receiver Disable
0: No effect.
1: Disables the receiver.
RXEN: Receiver Enable
0: No effect.
1: Enables the receiver if RXDIS=0.

AIMEL 344

32003M-AVR32-09/09 I ©

22.6.2 PS/2 Receive Holding Register

Name: RHRO, RHR1

Access Type: Read-only
31 30 29 28 27 26 25 24

| | | | | | | | |
23 22 21 20 19 18 17 16

| | | | | | | | |
15 14 13 12 11 10 9 8

| | | | | | | | |
7 6 5 4 3 2 1 0

‘ RXDATA |

* RXDATA: Receive Data
Data received from the device.

A ||'|E|,® 345

32003M-AVR32-09/09

22.6.3 PS/2 Transmit Holding Register

Name: THRO, THR1

Access Type: Write-only
31 30 29 28 27 26 25 24

| | | | | | | | |
23 22 21 20 19 18 17 16

| | | | | | | | |
15 14 13 12 11 10 9 8

| | | | | | | | |
7 6 5 4 3 2 1 0

‘ TXDATA |

o TXDATA: Transmit Data
Data to be transmitted to the device.

A ||'|E|,® 346

32003M-AVR32-09/09

22.6.4 PS/2 Status Register

Name: SRO, SR1

Access Type: Read-only
31 30 29 28 27 26 25 24

. - ! - r - r - r - - ;@ - [- |
23 22 21 20 19 18 17 16

. - - °r-r - r -+ - ;r - [- /|
15 14 13 12 11 10 9 8

|] |] | - | - | - | : | PARITY | NACK |
7 6 5 4 3 2 1 0

‘ - ‘ - ‘ OVRUN ‘ RXRDY ‘ - ‘ - ‘TXEMPTY‘ TXRDY |

* PARITY:

0: No parity errors detected on incoming data since last read of SR.
1: At least one parity error detected on incoming data since last read of SR.
NACK: Not Acknowledge
0: All transmissions has been properly acknowledged by the device since last read of SR.
1: At least one transmission was not properly acknowledged by the device since last read of SR.
Overrun
0: No receive overrun has occured since the last read of SR.
1: At least one receive overrun condition has occured since the last read of SR.
Receiver Ready
0: RHR is empty.
1: RHR contains valid data received from the device.
TXEMPTY: Transmitter Empty
0: Data remains in THR or is currently being transmitted from the shift register.
1: Both THR and the shift register are empty.
TXRDY: Transmitter Ready
0: Data has been loaded in THR and is waiting to be loaded into the shift register.
1: THR is empty.

.
(@]
<
]
[
Z

°
X0
X
g
=<

AIMEL 347

32003M-AVR32-09/09 I ©

22.6.5 PS/2 Interrupt Enable Register

Name: IERO, IER1

Access Type: Write-only
31 30 29 28 27 26 25 24

| | | | | | | | |
23 22 21 20 19 18 17 16

| | | | | | | | |
15 14 13 12 11 10 9 8

| i | i | i | i | i | i | PARITY | NACK |
7 6 5 4 3 2 1 0

‘ - ‘ - ‘ OVRUN ‘ RXRDY ‘ - ‘ - ‘ TXEMPTY ‘ TXRDY |

¢ PARITY: PARITY Interrupt Enable

* NACK: Not Acknowledge Interrupt Enable

¢ OVRUN: Overrun Interrupt Enable

¢ RXRDY: Overrun Interrupt Enable

e TXEMPTY: Overrun Interrupt Enable

.

TXRDY: Overrun Interrupt Enable
0: No effect.
1: Enables the corresponding interrupt.

A ||'|E|,® 348

32003M-AVR32-09/09

22.6.6 PS/2 Interrupt Disable Register

Name: IDRO, IDR1

Access Type: Write-Only
31 30 29 28 27 26 25 24

| | | | | | | | |
23 22 21 20 19 18 17 16

| | | | | | | | |
15 14 13 12 11 10 9 8

| i | i | i | i | i | i | PARITY | NACK |
7 6 5 4 3 2 1 0

‘ - ‘ - ‘ OVRUN ‘ RXRDY ‘ - ‘ - ‘ TXEMPTY ‘ TXRDY |

¢ PARITY: PARITY Interrupt Disable

* NACK: Not Acknowledge Interrupt Disable

¢ OVRUN: Overrun Interrupt Disable

¢ RXRDY: Overrun Interrupt Disable

e TXEMPTY: Overrun Interrupt Disable

.

TXRDY: Overrun Interrupt Disable
0: No effect.
1: Disables the corresponding interrupt.

A ||'|E|,® 349

32003M-AVR32-09/09

22.6.7 PS/2 Interrupt Mask Register

Name: IMRO, IMR1

Access Type: Read-only
31 30 29 28 27 26 25 24

| | | | | | | | |
23 22 21 20 19 18 17 16

| | | | | | | | |
15 14 13 12 11 10 9 8

| i | i | i | i | i | i | PARITY | NACK |
7 6 5 4 3 2 1 0

‘ - ‘ - ‘ OVRUN ‘ RXRDY ‘ - ‘ - ‘ TXEMPTY ‘ TXRDY |

¢ PARITY: PARITY Interrupt Mask

* NACK: Not Acknowledge Interrupt Mask

¢ OVRUN: Overrun Interrupt Mask

¢ RXRDY: Overrun Interrupt Mask

e TXEMPTY: Overrun Interrupt Mask

.

TXRDY: Overrun Interrupt Mask
0: The corresponding interrupt is disabled.
1: The corresponding interrupt is enabled.

A ||'|E|,® 350

32003M-AVR32-09/09

22.6.8 PS/2 Prescale Register

Name: PSRO, PSR1

Access Type: Read/Write
31 30 29 28 27 26 25 24

| | | | | | | | |
23 22 21 20 19 18 17 16

| | | | | | | | |
15 14 13 12 11 10 9 8

. - - - [- | PRSCV |
7 6 5 4 3 2 1 0

‘ PRSCV |

* PRSCV: Prescale Value

A ||'|E|,® 351

32003M-AVR32-09/09

23. Synchronous Serial Controller (SSC)

23.1 Features

23.2 Overview

32003M-AVR32-09/09

Rev: 2.0.0.2

* Provides Serial Synchronous Communication Links Used in Audio and Telecom Applications

* Contains an Independent Receiver and Transmitter and a Common Clock Divider

¢ Interfaced with Two PDCA Channels (DMA Access) to Reduce Processor Overhead

¢ Offers a Configurable Frame Sync and Data Length

* Receiver and Transmitter Can be Programmed to Start Automatically or on Detection of Different
Events on the Frame Sync Signal

* Receiver and Transmitter Include a Data Signal, a Clock Signal and a Frame Synchronization
Signal

The Atmel Synchronous Serial Controller (SSC) provides a synchronous communication link
with external devices. It supports many serial synchronous communication protocols generally
used in audio and telecom applications such as 12S, Short Frame Sync, Long Frame Sync, etc.

The SSC contains an independent receiver and transmitter and a common clock divider. The
receiver and the transmitter each interface with three signals: the TX_DATA/RX_DATA signal
for data, the TX_CLOCK/RX_CLOCK signal for the clock and the
TX_FRAME_SYNC/RX_FRAME_SYNC signal for the Frame Sync. The transfers can be pro-
grammed to start automatically or on different events detected on the Frame Sync signal.

The SSC’s high-level of programmability and its two dedicated PDCA channels of up to 32 bits
permit a continuous high bit rate data transfer without processor intervention.

Featuring connection to two PDCA channels, the SSC permits interfacing with low processor
overhead to the following:

*CODEC’s in master or slave mode
*DAC through dedicated serial interface, particularly 12S
*Magnetic card reader

Alm L 352

Y 5

23.3 Block Diagram

Figure 23-1. Block Diagram

Hgh

Peripheral Bus
Bridge

Peripheral] Y

:
2
:

<
:
3

— N

SSC Interface PIO

:
:
8

4
F:
]

Interrupt Control

SSC Interrupt
23.4 Application Block Diagram

Figure 23-2. Application Block Diagram

. Power Interrupt Test
OS or RTOS Driver Management Management | Management

SSC

Serial AUDIO Codec Time Slot Frame Line Interface]
Management | Management

AIMEL 353

32003M-AVR32-09/09 I ©

23.5 /O Lines Description

Table 23-1. 1/O Lines Description

Pin Name Pin Description Type
RX_FRAME_SYNC Receiver Frame Synchro Input/Output
RX_CLOCK Receiver Clock Input/Output
RX_DATA Receiver Data Input
TX_FRAME_SYNC Transmitter Frame Synchro Input/Output
TX_CLOCK Transmitter Clock Input/Output
TX_DATA Transmitter Data Output

23.6 Product Dependencies

23.6.1 I/0 Lines

The pins used for interfacing the compliant external devices may be multiplexed with PIO lines.

Before using the SSC receiver, the PIO controller must be configured to dedicate the SSC
receiver I/O lines to the SSC peripheral mode.

Before using the SSC transmitter, the PIO controller must be configured to dedicate the SSC
transmitter /O lines to the SSC peripheral mode.

23.6.2 Power Management

23.6.3 Interrupt

The SSC clock is generated by the power manager. Before using the SSC, the programmer
must ensure that the SSC clock is enabled in the power manager.

In the SSC description, Master Clock (CLK_SSC) is the bus clock of the peripheral bus to which
the SSC is connected.

The SSC interface has an interrupt line connected to the interrupt controller. Handling interrupts
requires programming the interrupt controller before configuring the SSC.

All SSC interrupts can be enabled/disabled configuring the SSC Interrupt mask register. Each
pending and unmasked SSC interrupt will assert the SSC interrupt line. The SSC interrupt ser-
vice routine can get the interrupt origin by reading the SSC interrupt status register.

23.7 Functional Description

32003M-AVR32-09/09

This chapter contains the functional description of the following: SSC Functional Block, Clock
Management, Data format, Start, Transmitter, Receiver and Frame Sync.

The receiver and transmitter operate separately. However, they can work synchronously by pro-
gramming the receiver to use the transmit clock and/or to start a data transfer when transmission
starts. Alternatively, this can be done by programming the transmitter to use the receive clock
and/or to start a data transfer when reception starts. The transmitter and the receiver can be pro-
grammed to operate with the clock signals provided on either the TX_CLOCK or RX_CLOCK
pins. This allows the SSC to support many slave-mode data transfers. The maximum clock
speed allowed on the TX_CLOCK and RX_CLOCK pins is the master clock divided by 2.

Alm L 354

Y 5

Figure 23-3. SSC Functional Block Diagram

Transmitter —
Clock Output | [| TX CLOCK
Controller | " || L CLOC
TX_CLOCK Input
CLK_SSC} Clock | Transmit Clock | TXdock | | Frame Sync | yley | 1x_FRAME SYNC
Divider Controller Controller
RX clock —
TX_FRAME_SYNC v
R S| o t Shift Regi 15 |™xoData
RX FRAMEE SYNC | oo —>| ATransmlt Shift ReglsterA I a
; TX_PDCA | Transmit Holding Transmit Sync
Peripheral ="
ergjusera Register Holding Register
“—> Load Shift —2& A
User
Interface
Receiver Clock Output |, [, RX CLOCK
—t—> Controller A =
RX_CLOCK
nput —*| Receive Ciock |[RXdock| | Framesyn | |]
” Controller P controller [€ 1€ RX_FRAME_SYNC
TX clock —| -
A 4
TX_FRAME_SYN I
—C> Start . . . 1
RX_FRAME SYNG | Saector —)I *Reoewe Shift Register € RX_DATA
\ A / RX_PDCA| Receive Holding Receive Sync
- ¢ Register Holding Register
PDCA] Interrupt Control Load Shift __ A A

23.7.1

32003M-AVR32-09/09

l

Clock Management

Interrupt Controller

The transmitter clock can be generated by:
ean external clock received on the TX_CLOCK I/O pad
sthe receiver clock
sthe internal clock divider

The receiver clock can be generated by:
ean external clock received on the RX_CLOCK I/O pad
sthe transmitter clock

sthe internal clock divider
Furthermore, the transmitter block can generate an external clock on the TX_CLOCK I/O pad,
and the receiver block can generate an external clock on the RX_CLOCK I/O pad.

This allows the SSC to support many Master and Slave Mode data transfers.

ATMEL

Y 5

355

23.7.1.1 Clock Divider

Figure 23-4. Divided Clock Block Diagram
Clock Divider

CMR

AKSSCLT 12-bit Counter

A 4
A 4

Divided Clock
L4

The Master Clock divider is determined by the 12-bit field DIV counter and comparator (so its
maximal value is 4095) in the Clock Mode Register CMR, allowing a Master Clock division by up
to 8190. The Divided Clock is provided to both the Receiver and Transmitter. When this field is
programmed to 0, the Clock Divider is not used and remains inactive.

When DIV is set to a value equal to or greater than 1, the Divided Clock has a frequency of Mas-
ter Clock divided by 2 times DIV. Each level of the Divided Clock has a duration of the Master
Clock multiplied by DIV. This ensures a 50% duty cycle for the Divided Clock regardless of
whether the DIV value is even or odd.

Figure 23-5. Divided Clock Generation

Master Clock _u_um_ml

Divided Clock
DIV =1

it

“—>
Divided Clock Frequency = CLK_SSC/2

Divided Clock ~ | | §

DIV=3 < >
Divided Clock Frequency = CLK_SSC/6
Table 23-2.
Maximum Minimum
CLK_SSC/2 CLK_SSC /8190

23.7.1.2 Transmitter Clock Management
The transmitter clock is generated from the receiver clock or the divider clock or an external
clock scanned on the TX_CLOCK I/O pad. The transmitter clock is selected by the CKS field in
TCMR (Transmit Clock Mode Register). Transmit Clock can be inverted independently by the

CKI bits in TCMR.
Alm |, 356

32003M-AVR32-09/09 I ©

The transmitter can also drive the TX_CLOCK I/O pad continuously or be limited to the actual
data transfer. The clock output is configured by the TCMR register. The Transmit Clock Inver-
sion (CKI) bits have no effect on the clock outputs. Programming the TCMR register to select
TX_CLOCK pin (CKS field) and at the same time Continuous Transmit Clock (CKO field) might
lead to unpredictable results.

Figure 23-6. Transmitter Clock Management

TX_CLOCK(pin)
MUX Tri-state R Clock
. Controller ” Output
Receiver q q
Clock ” ”
Divider >
Clock
T CKO Data Transfer
CKS
- I\I/II\L'J\;(- Tri-state Transmitter
d Controller Clock
CKI CKG

23.7.1.3 Receiver Clock Management

32003M-AVR32-09/09

The receiver clock is generated from the transmitter clock or the divider clock or an external
clock scanned on the RX_CLOCK 1/O pad. The Receive Clock is selected by the CKS field in
RCMR (Receive Clock Mode Register). Receive Clocks can be inverted independently by the
CKI bits in RCMR.

The receiver can also drive the RX_CLOCK /O pad continuously or be limited to the actual data
transfer. The clock output is configured by the RCMR register. The Receive Clock Inversion
(CKI) bits have no effect on the clock outputs. Programming the RCMR register to select
RX_CLOCK pin (CKS field) and at the same time Continuous Receive Clock (CKO field) can
lead to unpredictable results.

Alm L 357

Y 5

23.7.1.4

23.7.2

32003M-AVR32-09/09

Figure 23-7. Receiver Clock Management

RX_CLOCK (pin)

>
MUX Tri-state Clock
Controller > Output
Transmitter) >
Clock
Divider)
Clock
CKO Data Transfer
CKS INV Tri-state)
MUX » Controller > Receiver
Clock
CKI CKG

Serial Clock Ratio Considerations

The Transmitter and the Receiver can be programmed to operate with the clock signals provided
on either the TX_CLOCK or RX_CLOCK pins. This allows the SSC to support many slave-mode
data transfers. In this case, the maximum clock speed allowed on the RX_CLOCK pin is:
—Master Clock divided by 2 if Receiver Frame Synchro is input
—Master Clock divided by 3 if Receiver Frame Synchro is output
In addition, the maximum clock speed allowed on the TX_CLOCK pin is:

—Master Clock divided by 6 if Transmit Frame Synchro is input
—Master Clock divided by 2 if Transmit Frame Synchro is output

Transmitter Operations

A transmitted frame is triggered by a start event and can be followed by synchronization data
before data transmission.

The start event is configured by setting the Transmit Clock Mode Register (TCMR). See Section
“23.7.4” on page 360.

The frame synchronization is configured setting the Transmit Frame Mode Register (TFMR).
See Section “23.7.5” on page 362.

To transmit data, the transmitter uses a shift register clocked by the transmitter clock signal and
the start mode selected in the TCMR. Data is written by the application to the THR register then
transferred to the shift register according to the data format selected.

When both the THR and the transmit shift register are empty, the status flag TXEMPTY is set in
SR. When the Transmit Holding register is transferred in the Transmit shift register, the status
flag TXRDY is set in SR and additional data can be loaded in the holding register.

Alm L 358

Y 5

AT32AP7000

Figure 23-8. Transmitter Block Diagram

CR.TXEN

| srRTXeN |
CRTXDIS
TFMR.DATDEF TCMR.STTDLY
TFMR.FSDEN
TFMR.DATNB
)
L~
TX_FRAME_SYNC TEMRMSBE 0 L~ 1 |Tx DpATA
RX_FRAME_SYNC
Transmitter Clock +Sta " |
—> Selector Transmit Shift Register I—
TFMR.FSDEN
TCMR.STTDLY
TFMR.DATLEN—| THR | | TSHR |_ TFMR.FSLEN

23.7.3 Receiver Operations
A received frame is triggered by a start event and can be followed by synchronization data
before data transmission.

The start event is configured setting the Receive Clock Mode Register (RCMR). See Section
“23.7.4” on page 360.

The frame synchronization is configured setting the Receive Frame Mode Register (RFMR). See
Section “23.7.5” on page 362.

The receiver uses a shift register clocked by the receiver clock signal and the start mode
selected in the RCMR. The data is transferred from the shift register depending on the data for-
mat selected.

When the receiver shift register is full, the SSC transfers this data in the holding register, the sta-
tus flag RXRDY is set in SR and the data can be read in the receiver holding register. If another
transfer occurs before read of the RHR register, the status flag OVERUN is set in SR and the
receiver shift register is transferred in the RHR register.

Alm L 359

32003M-AVR32-09/09 I ©

Figure 23-9. Receiver Block Diagram

RX_CLOCK (pin)

e

Transmitter »

Clock

Clock

23.7.4 Start

32003M-AVR32-09/09

MUX Tri-state Clock
Controller > Output
A -
Ll
Divider > T T
T CKO Data Transfer
CKS INV Tri-state
> MUX > Controller _»Receiver
Clock
CKI CKG

The transmitter and receiver can both be programmed to start their operations when an event
occurs, respectively in the Transmit Start Selection (START) field of TCMR and in the Receive
Start Selection (START) field of RCMR.

Under the following conditions the start event is independently programmable:
*Continuous. In this case, the transmission starts as soon as a word is written in THR and the
reception starts as soon as the Receiver is enabled.
*Synchronously with the transmitter/receiver
*On detection of a falling/rising edge on TX_FRAME_SYNC/RX_FRAME_SYNC
*On detection of a low level/high level on TX_FRAME_SYNC/RX_FRAME_SYNC
*On detection of a level change or an edge on TX_FRAME_SYNC/RX_FRAME_SYNC

A start can be programmed in the same manner on either side of the Transmit/Receive Clock
Register (RCMR/TCMR). Thus, the start could be on TX_FRAME_SYNC (Transmit) or
RX_FRAME_SYNC (Receive).

Moreover, the Receiver can start when data is detected in the bit stream with the Compare
Functions.

Detection on TX_FRAME_SYNC/RX_FRAME_SYNC input/output is done by the field FSOS of
the Transmit/Receive Frame Mode Register (TFMR/RFMR).

Alm L 360

Y 5

AT32AP7000

Figure 23-10. Transmit Start Mode

TX_CLOCK (Input) _I_’_|_’_|_

TX_FRAME_SYNC (Input)

-

L L L

TX_DATA (Output)
: < D
Start= Low Level on TX_FRAME_SYNC STTDLY
Y
TX_DATA (Output) /E\
Start= Falling Edge on TX_FRAME_SYNC v STTDLY
-
TX_DATA (Output) >/ BO \
Start= High Level on TX_FRAME_SYNC \‘_/ STTDLY
Y
- TX_DATA (Output) X < B0 > B1 >
Start= Rising Edge on TX_FRAME_SYNC N\ STTDLY
Y
TX_DATA (Output) —
Start= Level Change on TX_FRAME_SYNC< - BO >
g _ - r N Q _ STTDLY
Y Y
TX_DATA (Output)
Start= Any Edge on TX_FRAME_SYNC BO < B1 > <‘BO > B1 STTDLY
o Y

Figure 23-11. Receive Pulse/Edge Start Modes

RX_FRAME_SYNC (Input)

RX_DATA (Input)

< X X),
Start = Low Level on RX_FRAME_SYNC

— — < STTDLY
RX_DATA (Input) < >
Start = Falling Edge on RX_FRAME_SYNC X STTDLY

9

<
RX_DATA (Input) >®
Start = High Level on RX_FRAME_SYNC \ STTDLY
Y
RX_DATA (Input
~ DATA e X Ceo X 81)
Start = Rising Edge on RX_FRAME_SYNC STTDLY

RX_DATA (Input) C—
Start = Level Change on RX_FRAME_SYNC M
RX_DATA (Input)

Start = Any Edge on RX_FRAME_SYNC @g BO 2

STTDLY

K B0 X B1)
STTDLY

CECHY
Q
0
8

Alm L 361

32003M-AVR32-09/09 I ©

23.7.5 Frame Sync

The Transmitter and Receiver Frame Sync pins, TX_FRAME_SYNC and RX_FRAME_SYNC,
can be programmed to generate different kinds of frame synchronization signals. The Frame
Sync Output Selection (FSOS) field in the Receive Frame Mode Register (RFMR) and in the
Transmit Frame Mode Register (TFMR) are used to select the required waveform.

*Programmable low or high levels during data transfer are supported.

*Programmable high levels before the start of data transfers or toggling are also supported.
If a pulse waveform is selected, the Frame Sync Length (FSLEN) field in RFMR and TFMR pro-
grams the length of the pulse, from 1 bit time up to 16 bit time.

The periodicity of the Receive and Transmit Frame Sync pulse output can be programmed
through the Period Divider Selection (PERIOD) field in RCMR and TCMR.

23.7.5.1 Frame Sync Data

Frame Sync Data transmits or receives a specific tag during the Frame Sync signal.

During the Frame Sync signal, the Receiver can sample the RX_DATA line and store the data in
the Receive Sync Holding Register and the transmitter can transfer Transmit Sync Holding Reg-
ister in the Shifter Register. The data length to be sampled/shifted out during the Frame Sync
signal is programmed by the FSLEN field in RFMR/TFMR.

Concerning the Receive Frame Sync Data operation, if the Frame Sync Length is equal to or
lower than the delay between the start event and the actual data reception, the data sampling
operation is performed in the Receive Sync Holding Register through the Receive Shift Register.

The Transmit Frame Sync Operation is performed by the transmitter only if the bit Frame Sync
Data Enable (FSDEN) in TFMR is set. If the Frame Sync length is equal to or lower than the
delay between the start event and the actual data transmission, the normal transmission has pri-
ority and the data contained in the Transmit Sync Holding Register is transferred in the Transmit
Register, then shifted out.

23.7.5.2 Frame Sync Edge Detection

32003M-AVR32-09/09

The Frame Sync Edge detection is programmed by the FSEDGE field in RFMR/TFMR. This sets
the corresponding flags RXSYN/TXSYN in the SSC Status Register (SR) on frame synchro
edge detection (signals RX_FRAME_SYNC/TX_FRAME_SYNC).

Alm L 362

Y 5

23.7.6 Receive Compare Modes

Figure 23-12. Receive Compare Modes

LR TS T T T = € CD.
ree XD

Ean

»d
>

A

\4
A

)
FSLEN STTDLY DATLEN
Up to 16 Bits
(4 in This Example)

23.7.6.1 Compare Functions
Compare 0 can be one start event of the Receiver. In this case, the receiver compares at each
new sample the last FSLEN bits received at the FSLEN lower bit of the data contained in the
Compare 0 Register (RCOR). When this start event is selected, the user can program the
Receiver to start a new data transfer either by writing a new Compare 0, or by receiving continu-
ously until Compare 1 occurs. This selection is done with the bit (STOP) in RCMR.

23.7.7 Data Format

The data framing format of both the transmitter and the receiver are programmable through the
Transmitter Frame Mode Register (TFMR) and the Receiver Frame Mode Register (RFMR). In
either case, the user can independently select:

sthe event that starts the data transfer (START)

sthe delay in number of bit periods between the start event and the first data bit (STTDLY)

sthe length of the data (DATLEN)

sthe number of data to be transferred for each start event (DATNB).

sthe length of synchronization transferred for each start event (FSLEN)

sthe bit sense: most or lowest significant bit first (MSBF).

Additionally, the transmitter can be used to transfer synchronization and select the level driven
on the TX_DATA pin while not in data transfer operation. This is done respectively by the Frame
Sync Data Enable (FSDEN) and by the Data Default Value (DATDEF) bits in TFMR.

Alm L 363

32003M-AVR32-09/09 I ©

Table 23-3. Data Frame Registers

Transmitter Receiver Field Length Comment

TFMR RFMR DATLEN Up to 32 Size of word

TFMR RFMR DATNB Upto 16 Number of words transmitted in frame
TFMR RFMR MSBF Most significant bit first

TFMR RFMR FSLEN Upto 16 Size of Synchro data register

TFMR DATDEF Oor1 Data default value ended

TFMR FSDEN Enable send TSHR

TCMR RCMR PERIOD Upto 512 Frame size

TCMR RCMR STTDLY Up to 255 Size of transmit start delay

Figure 23-13. Transmit and Receive Frame Format in Edge/Pulse Start Modes

Start Start
< PERIOD o
TX_FRAME_SYNC ¥ "y
/] —
RX_FRAME_SYNC
L A -
" FSLEN ™
TX_DATA L/
(If FSDEN = 1) Sync Data Default Data Data > Default >\ Sync Data
From TSHR | From DATDEF From THR From THR From DATDEF,
TX_DATA
(If FSDEN = 0) Default > Data > Data > Default >
From DATDEF From THR From THR From DATDEF
RX_DATA Sync Data Ignored Data < Data > Ignored Sync Data
To RSHR To RHR To RHR
< > <€ rPE——mmm>
STTDLY DATLEN DATLEN
DATNB

Note: 1. Example of input on falling edge of TX_FRAME_SYNC/RX_FRAME_SYNC.

AIMEL 364

32003M-AVR32-09/09 I ©

Figure 23-14. Transmit Frame Format in Continuous Mode

¢ Start

W)
o}
2

TX_DATA Data Data
From THR From THR
< > |
DATLEN ' DATLEN

Start: 1. TXEMPTY set to 1
2. Write into the THR

Note: 1. STTDLY is set to 0. In this example, THR is loaded twice. FSDEN value has no effect on the
transmission. SyncData cannot be output in continuous mode.

Figure 23-15. Receive Frame Format in Continuous Mode

Start = Enable Receiver

RX_DATA Data 'p< Data ><

To RHR To RHR
“—>

DATLEN DATLEN

Note: 1. STTDLY is set to 0.

23.7.8 Loop Mode
The receiver can be programmed to receive transmissions from the transmitter. This is done by
setting the Loop Mode (LOOP) bit in RFMR. In this case, RX_DATA is connected to TX_DATA,
RX_FRAME_SYNC is connected to TX_FRAME_SYNC and RX_CLOCK is connected to
TX_CLOCK.

23.7.9 Interrupt
Most bits in SR have a corresponding bit in interrupt management registers.

The SSC can be programmed to generate an interrupt when it detects an event. The interrupt is
controlled by writing IER (Interrupt Enable Register) and IDR (Interrupt Disable Register) These
registers enable and disable, respectively, the corresponding interrupt by setting and clearing
the corresponding bit in IMR (Interrupt Mask Register), which controls the generation of inter-
rupts by asserting the SSC interrupt line connected to the interrupt controller.

Alm L 365

32003M-AVR32-09/09 I ©

Figure 23-16. Interrupt Block Diagram

ErR || |
PDCA Set¢
TXBUFE >
ENDTX >
Transmitter
TXRDY >
TXEMPTY 4
TXSYNC >
Interrupt
RXBUFF » Control
ENDRX 4
Receiver
RXRDY »
OVRUN >
RXSYNC >

23.8 SSC Application Examples
The SSC can support several serial communication modes used in audio or high speed serial
links. Some standard applications are shown in the following figures. All serial link applications
supported by the SSC are not listed here.

Figure 23-17. Audio Application Block Diagram

SSC

TX_CLOCK

TX_FRAME_SYNC|

TX_DATA

RX_DATA

RX_FRAME_SYNC

RX_CLOCK

Clock SCK

»i
)

Word Select WS

\ 4

»i
)

Data SD

\ 4

32003M-AVR32-09/09

12S
RECEIVER

SSC Int

errupt

I I

Left Channel

Right Channel

AT32AP7000

366

Figure 23-18. Codec Application Block Diagram

—] Serial Data Clock (SCLK)
TX_CLOCK >
— Frame sync (FSYNC) N
TX_FRAME_SYNC d
— CODEC
— Serial Data Out
TX_DATA g
SSC —
— Serial Data In
RX_DATA <
RXF E_SYNC Serial Data Clock (SCLK))
RX_CLOCK Frame sync (FSYNC) ‘ First Time Slot

i Dstart

Figure 23-19. Time Slot Application Block Diagram

—] SCLK
TX_CLOCK g
—1 FSYNC
TX_FRAME_SYNC > CODEC
First
TX DATA [Data Out » Time Slot
SSC —
RX_DATA < Data in
RX_FRAME_SYNC

RX_CLOCK o CODEC

Second
Time Slot

Serial Data Clock (SCLK) 55

Frame sync (FSYNC) First Time Slot Second Time Slot

Dstart Dend

C>©C><*;>©C>C>C

A ||'|E|,® 367

Serial Data Out

’ \

32003M-AVR32-09/09

23.9 User Interface

Table 23-4. Register Mapping

Offset Register Register Name Access Reset
0x0 Control Register CR Write -
0x4 Clock Mode Register CMR Read/Write 0x0
0x8 Reserved - - -
0xC Reserved - - -
0x10 Receive Clock Mode Register RCMR Read/Write 0x0
Ox14 Receive Frame Mode Register RFMR Read/Write 0x0
0x18 Transmit Clock Mode Register TCMR Read/Write 0x0
0x1C Transmit Frame Mode Register TFMR Read/Write 0x0
0x20 Receive Holding Register RHR Read 0x0
0x24 Transmit Holding Register THR Write -
0x28 Reserved - - -
0x2C Reserved - - -
0x30 Receive Sync. Holding Register RSHR Read 0x0
0x34 Transmit Sync. Holding Register TSHR Read/Write 0x0
0x38 Receive Compare 0 Register RCOR Read/Write 0x0
0x3C Receive Compare 1 Register RC1R Read/Write 0x0
0x40 Status Register SR Read 0x000000CC
0x44 Interrupt Enable Register IER Write -
0x48 Interrupt Disable Register IDR Write -
0x4C Interrupt Mask Register IMR Read 0x0

0x50-0xFC Reserved - - -

AIMEL 368

32003M-AVR32-09/09 I ©

23.9.1 Control Register

Name: CR
Access Type: Write-only
Offset: 0x00

Reset value: -

31 30 29 28 27 26 25 24
I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16
I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8
|SWRST| — | - | — | — | — | TXDIS | TXEN |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | RXDIS | RXEN |

e SWRST: Software Reset
0: No effect.

1: Performs a software reset. Has priority on any other bit in CR.

e TXDIS: Transmit Disable
0: No effect.

1: Disables Transmit. If a character is currently being transmitted, disables at end of current character transmission.

e TXEN: Transmit Enable
0: No effect.

1: Enables Transmit if TXDIS is not set.

¢ RXDIS: Receive Disable
0: No effect.

1: Disables Receive. If a character is currently being received, disables at end of current character reception.

¢ RXEN: Receive Enable
0: No effect.

1: Enables Receive if RXDIS is not set.

Alm L 369

32003M-AVR32-09/09 I ©

23.9.2 Clock Mode Register

Name: CMR

Access Type: Read/Write

Offset: 0x04

Reset value: 0x00000000
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

— [71 71 7 DV |
7 6 5 4 3 2 1 0

| DIV |

¢ DIV: Clock Divider
0: The Clock Divider is not active.

Any Other Value: The Divided Clock equals the Master Clock divided by 2 times DIV. The maximum bit rate is CLK_SSC/2.
The minimum bit rate is CLK_SSC/2 x 4095 = CLK_SSC/8190.

A ||'|E|,® 370

32003M-AVR32-09/09

23.9.3 Receive Clock Mode Register

Name: RCMR

Access Type: Read/Write

Offset: 0x10

Reset value: 0x00000000
31 30 29 28 27 26 25 24

| PERIOD |
23 22 21 20 19 18 17 16

| STTDLY |
15 14 13 12 11 10 9 8

| - - | - | STOP | START |
7 6 5 4 3 2 1 0

| CKG | CKI | CKO | CKS |

* PERIOD: Receive Period Divider Selection

This field selects the divider to apply to the selected Receive Clock in order to generate a new Frame Sync Signal. If 0, no
PERIOD signal is generated. If not 0, a PERIOD signal is generated each 2 x (PERIOD+1) Receive Clock.

e STTDLY: Receive Start Delay

If STTDLY is not 0, a delay of STTDLY clock cycles is inserted between the start event and the actual start of reception.
When the Receiver is programmed to start synchronously with the Transmitter, the delay is also applied.

Note: It is very important that STTDLY be set carefully. If STTDLY must be set, it should be done in relation to TAG
(Receive Sync Data) reception.

e STOP: Receive Stop Selection

0: After completion of a data transfer when starting with a Compare 0, the receiver stops the data transfer and waits for a
new compare 0.

1: After starting a receive with a Compare 0, the receiver operates in a continuous mode until a Compare 1 is detected.

¢ START: Receive Start Selection

START Receive Start

0x0 Continuous, as soon as the receiver is enabled, and immediately after the end of
transfer of the previous data.

0x1 Transmit start
0x2 Detection of a low level on RX_FRAME_SYNC signal
0x3 Detection of a high level on RX_FRAME_SYNC signal
0x4 Detection of a falling edge on RX_FRAME_SYNC signal
0x5 Detection of a rising edge on RX_FRAME_SYNC signal
0x6 Detection of any level change on RX_FRAME_SYNC signal
0x7 Detection of any edge on RX_FRAME_SYNC signal
0x8 Compare 0

0x9-0xF Reserved

Alm L 371

32003M-AVR32-09/09 I ©

e CKG: Receive Clock Gating Selection

CKG Receive Clock Gating

0x0 None, continuous clock

0x1 Receive Clock enabled only if RX_FRAME_SYNC Low
0x2 Receive Clock enabled only if RX_FRAME_SYNC High
0x3 Reserved

¢ CKI: Receive Clock Inversion

0: The data inputs (Data and Frame Sync signals) are sampled on Receive Clock falling edge. The Frame Sync signal out-
put is shifted out on Receive Clock rising edge.

1: The data inputs (Data and Frame Sync signals) are sampled on Receive Clock rising edge. The Frame Sync signal out-
put is shifted out on Receive Clock falling edge.

CKI affects only the Receive Clock and not the output clock signal.

¢ CKO: Receive Clock Output Mode Selection

CKO Receive Clock Output Mode RX_CLOCK pin
0x0 None Input-only
0x1 Continuous Receive Clock Output
0x2 Receive Clock only during data transfers Output
0x3-0x7 Reserved
e CKS: Receive Clock Selection

CKS Selected Receive Clock

0x0 Divided Clock

0x1 TX_CLOCK Clock signal

0x2 RX_CLOCK pin

0x3 Reserved

AIMEL 372

32003M-AVR32-09/09 I ©

2394 Receive Frame Mode Register

Name: RFMR

Access Type: Read/Write

Offset: 0x14

Reset value: 0x00000000
31 30 29 28 27 26 25 24

| FSLENHI | — — — | FSEDGE |
23 22 21 20 19 18 17 16

| - | FSOS | FSLEN |
15 14 13 12 11 10 9 8

I - I - I - I - I DATNB |
7 6 5 4 3 2 1 0

| MSBF | - | LOOP | DATLEN |

e FSLENHI: Receive Frame Sync Length High part
The four MSB of the FSLEN bitfield.

e FSEDGE: Frame Sync Edge Detection
Determines which edge on Frame Sync will generate the interrupt RXSYN in the SSC Status Register.

FSEDGE Frame Sync Edge Detection

0x0 Positive Edge Detection

0x1 Negative Edge Detection

¢ FSOS: Receive Frame Sync Output Selection
FSOS Selected Receive Frame Sync Signal RX_FRAME_SYNC Pin
0x0 None Input-only
0x1 Negative Pulse Output
0x2 Positive Pulse Output
0x3 Driven Low during data transfer Output
0x4 Driven High during data transfer Output
0x5 Toggling at each start of data transfer Output
0x6-0x7 Reserved Undefined

¢ FSLEN: Receive Frame Sync Length

This field defines the length of the Receive Frame Sync Signal and the number of bits sampled and stored in the Receive
Sync Data Register. When this mode is selected by the START field in the Receive Clock Mode Register, it also deter-
mines the length of the sampled data to be compared to the Compare 0 or Compare 1 register. Note: The four most
significant bits fo this bitfield are in the FSLENHI bitfield.

Pulse length is equal to ({FSLENHI,FSLEN} + 1) Receive Clock periods. Thus, if {FSLENHI,FSLEN} is 0, the Receive
Frame Sync signal is generated during one Receive Clock period.

e DATNB: Data Number per Frame

Alm L 373

32003M-AVR32-09/09 I ©

This field defines the number of data words to be received after each transfer start, which is equal to (DATNB + 1).

¢ MSBF: Most Significant Bit First
0: The lowest significant bit of the data register is sampled first in the bit stream.

1: The most significant bit of the data register is sampled first in the bit stream.

e LOOP: Loop Mode

0: Normal operating mode.

1: RX_DATA is driven by TX_DATA, RX_FRAME_SYNC is driven by TX_FRAME_SYNC and TX_CLOCK drives
RX_CLOCK.

e DATLEN: Data Length

0: Forbidden value (1-bit data length not supported).

Any other value: The bit stream contains DATLEN + 1 data bits. Moreover, it defines the transfer size performed by the
PDCA assigned to the Receiver. If DATLEN is lower or equal to 7, data transfers are in bytes. If DATLEN is between 8 and
15 (included), half-words are transferred, and for any other value, 32-bit words are transferred.

Alm L 374

32003M-AVR32-09/09 I ©

23.95 Transmit Clock Mode Register

Name: TCMR

Access Type: Read/Write

Offset: 0x18

Reset value: 0x00000000
31 30 29 28 27 26 25 24

| PERIOD |
23 22 21 20 19 18 17 16

| STTDLY |
15 14 13 12 11 10 9 8

| - - | - [- START |
7 6 5 4 3 2 1 0

| CKG | CKI | CKO | CKS |

¢ PERIOD: Transmit Period Divider Selection

This field selects the divider to apply to the selected Transmit Clock to generate a new Frame Sync Signal. If 0, no period
signal is generated. If not 0, a period signal is generated at each 2 x (PERIOD+1) Transmit Clock.

e STTDLY: Transmit Start Delay

If STTDLY is not 0, a delay of STTDLY clock cycles is inserted between the start event and the actual start of transmission
of data. When the Transmitter is programmed to start synchronously with the Receiver, the delay is also applied.

Note: STTDLY must be set carefully. If STTDLY is too short in respect to TAG (Transmit Sync Data) emission, data is emit-
ted instead of the end of TAG.

e START: Transmit Start Selection

START Transmit Start
0x0 Continuous, as soon as a word is vyritten in the THR Register (if Transmit is enabled), and immediately
after the end of transfer of the previous data.
0x1 Receive start
0x2 Detection of a low level on TX_FRAME_SYNC signal
0x3 Detection of a high level on TX_FRAME_SYNC signal
0x4 Detection of a falling edge on TX_FRAME_SYNC signal
0x5 Detection of a rising edge on TX_FRAME_SYNC signal
0x6 Detection of any level change on TX_FRAME_SYNC signal
0x7 Detection of any edge on TX_FRAME_SYNC signal
0x8 - OxF Reserved

Alm L 375

32003M-AVR32-09/09 I ©

e CKG: Transmit Clock Gating Selection

CKG Transmit Clock Gating

0x0 None, continuous clock

0x1 Transmit Clock enabled only if TX_FRAME_SYNC Low
0x2 Transmit Clock enabled only if TX_FRAME_SYNC High
0x3 Reserved

¢ CKI: Transmit Clock Inversion

0: The data outputs (Data and Frame Sync signals) are shifted out on Transmit Clock falling edge. The Frame sync signal
input is sampled on Transmit clock rising edge.

1: The data outputs (Data and Frame Sync signals) are shifted out on Transmit Clock rising edge. The Frame sync signal
input is sampled on Transmit clock falling edge.

CKI affects only the Transmit Clock and not the output clock signal.

e CKO: Transmit Clock Output Mode Selection

CKO Transmit Clock Output Mode TX_CLOCK pin
0x0 None Input-only
0x1 Continuous Transmit Clock Output
0x2 Transmit Clock only during data transfers Output

0x3-0x7 Reserved

¢ CKS: Transmit Clock Selection

CKS Selected Transmit Clock
0x0 Divided Clock

0x1 RX_CLOCK Clock signal
0x2 TX_CLOCK Pin

0x3 Reserved

AIMEL 376

32003M-AVR32-09/09 I ©

23.9.6 Transmit Frame Mode Register

Name: TFMR

Access Type: Read/Write

Offset: 0x1C

Reset value: 0x00000000
31 30 29 28 27 26 25 24

| FSLENHI | — — — | FSEDGE |
23 22 21 20 19 18 17 16

| FSDEN | FSOS | FSLEN |
15 14 13 12 11 10 9 8

I - I - I - I - I DATNB |
7 6 5 4 3 2 1 0

| MSBF | - | DATDEF | DATLEN |

e FSLENHI: Transmit Frame Sync Length High part
The four MSB of the FSLEN bitfield.

e FSEDGE: Frame Sync Edge Detection
Determines which edge on frame sync will generate the interrupt TXSYN (Status Register).

FSEDGE Frame Sync Edge Detection
0x0 Positive Edge Detection
0x1 Negative Edge Detection

e FSDEN: Frame Sync Data Enable
0: The TX_DATA line is driven with the default value during the Transmit Frame Sync signal.

1: TSHR value is shifted out during the transmission of the Transmit Frame Sync signal.

e FSOS: Transmit Frame Sync Output Selection

FSOS Selected Transmit Frame Sync Signal TX_FRAME_SYNC Pin
0x0 None Input-only
0x1 Negative Pulse Output
0x2 Positive Pulse Output
0x3 Driven Low during data transfer Output
0x4 Driven High during data transfer Output
0x5 Toggling at each start of data transfer Output
0x6-0x7 Reserved Undefined

e FSLEN: Transmit Frame Sync Length

This field defines the length of the Transmit Frame Sync signal and the number of bits shifted out from the Transmit Sync
Data Register if FSDEN is 1. Note: The four most significant bits fo this bitfield are in the FSLENHI bitfield.

Alm L 377

32003M-AVR32-09/09 I ©

Pulse length is equal to ({(FSLENHI,FSLEN} + 1) Transmit Clock periods, i.e., the pulse length can range from 1 to 16
Transmit Clock periods. If {FSLENHI,FSLEN} is 0, the Transmit Frame Sync signal is generated during one Transmit Clock
period.

e DATNB: Data Number per frame
This field defines the number of data words to be transferred after each transfer start, which is equal to (DATNB +1).

¢ MSBF: Most Significant Bit First
0: The lowest significant bit of the data register is shifted out first in the bit stream.
1: The most significant bit of the data register is shifted out first in the bit stream.

e DATDEF: Data Default Value

This bit defines the level driven on the TX_DATA pin while out of transmission. Note that if the pin is defined as multi-drive
by the PIO Controller, the pin is enabled only if the SCC TX_DATA output is 1.

e DATLEN: Data Length
0: Forbidden value (1-bit data length not supported).

Any other value: The bit stream contains DATLEN + 1 data bits. Moreover, it defines the transfer size performed by the
PDCA assigned to the Transmit. If DATLEN is lower or equal to 7, data transfers are bytes, if DATLEN is between 8 and 15
(included), half-words are transferred, and for any other value, 32-bit words are transferred.

Alm L 378

32003M-AVR32-09/09 I ©

23.9.7 SSC Receive Holding Register

Name: RHR

Access Type: Read-only

Offset: 0x20

Reset value: 0x00000000
31 30 29 28 27 26 25 24

| RDAT |
23 22 21 20 19 18 17 16

| RDAT |
15 14 13 12 11 10 9 8

| RDAT |
7 6 5 4 3 2 1 0

| RDAT |

¢ RDAT: Receive Data

Right aligned regardless of the number of data bits defined by DATLEN in RFMR.

32003M-AVR32-09/09

ATMEL

Y 5

379

23.9.8 Transmit Holding Register

Name: THR

Access Type: Write-only

Offset: 0x24

Reset value: -
31 30 29 28 27 26 25 24

| TDAT |
23 22 21 20 19 18 17 16

| TDAT |
15 14 13 12 11 10 9 8

| TDAT |
7 6 5 4 3 2 1 0

TDAT |

e TDAT: Transmit Data

Right aligned regardless of the number of data bits defined by DATLEN in TFMR.

32003M-AVR32-09/09

ATMEL

Y 5

380

23.9.9 Receive Synchronization Holding Register

Name: RSHR

Access Type: Read-only

Offset: 0x30

Reset value: 0x00000000
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| RSDAT |
7 6 5 4 3 2 1 0

| RSDAT |

¢ RSDAT: Receive Synchronization Data

A ||'|E|,® 381

32003M-AVR32-09/09

23.9.10 Transmit Synchronization Holding Register

Name: TSHR

Access Type: Read/Write

Offset: 0x34

Reset value: 0x00000000
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| TSDAT |
7 6 5 4 3 2 1 0

| TSDAT |

¢ TSDAT: Transmit Synchronization Data

A ||'|E|,® 382

32003M-AVR32-09/09

23.9.11 Receive Compare 0 Register

Name: RCOR

Access Type: Read/Write

Offset: 0x38

Reset value: 0x00000000
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| CPO |
7 6 5 4 3 2 1 0

| CPO |

e CPO: Receive Compare Data 0

A ||'|E|,® 383

32003M-AVR32-09/09

23.9.12 Receive Compare 1 Register

Name: RC1R

Access Type: Read/Write

Offset: 0x3C

Reset value: 0x00000000
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| CP1 |
7 6 5 4 3 2 1 0

| CP1 |

e CP1: Receive Compare Data 1

A ||'|E|,® 384

32003M-AVR32-09/09

23.9.13 Status Register

Name: SR

Access Type: Read-only

Offset: 0x40

Reset value: 0x000000CC
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - | RXEN [TXEN |
15 14 13 12 11 10 9 8

| - | - | - | - | RXSYN | TXSYN | CP1 | CPO |
7 6 5 4 3 2 1 0

| RXBUFF | ENDRX | OVRUN | RXRDY | TXBUFE | ENDTX | TXEMPTY | TXRDY |

e RXEN: Receive Enable
0: Receive is disabled.

1: Receive is enabled.

e TXEN: Transmit Enable
0: Transmit is disabled.

1: Transmit is enabled.

¢ RXSYN: Receive Sync
0: An Rx Sync has not occurred since the last read of the Status Register.

1: An Rx Sync has occurred since the last read of the Status Register.

e TXSYN: Transmit Sync
0: A Tx Sync has not occurred since the last read of the Status Register.

1: A Tx Sync has occurred since the last read of the Status Register.

e CP1: Compare 1
0: A compare 1 has not occurred since the last read of the Status Register.

1: A compare 1 has occurred since the last read of the Status Register.

e CPO: Compare 0
0: A compare 0 has not occurred since the last read of the Status Register.

1: A compare 0 has occurred since the last read of the Status Register.

¢ RXBUFF: Receive Buffer Full
0: RCR or RNCR have a value other than 0.

1: Both RCR and RNCR have a value of 0.

e ENDRX: End of Reception
0: Data is written on the Receive Counter Register or Receive Next Counter Register.

Alm L 385

32003M-AVR32-09/09 I ©

1: End of PDCA transfer when Receive Counter Register has arrived at zero.

¢ OVRUN: Receive Overrun
0: No data has been loaded in RHR while previous data has not been read since the last read of the Status Register.

1: Data has been loaded in RHR while previous data has not yet been read since the last read of the Status Register.

¢ RXRDY: Receive Ready
0: RHR is empty.

1: Data has been received and loaded in RHR.

e TXBUFE: Transmit Buffer Empty
0: TCR or TNCR have a value other than 0.

1: Both TCR and TNCR have a value of 0.

e ENDTX: End of Transmission
0: The register TCR has not reached 0 since the last write in TCR or TNCR.

1: The register TCR has reached 0 since the last write in TCR or TNCR.

e TXEMPTY: Transmit Empty
0: Data remains in THR or is currently transmitted from TSR.

1: Last data written in THR has been loaded in TSR and last data loaded in TSR has been transmitted.

¢ TXRDY: Transmit Ready
0: Data has been loaded in THR and is waiting to be loaded in the Transmit Shift Register (TSR).

1: THR is empty.

Alm L 386

32003M-AVR32-09/09 I ©

23.9.14 Interrupt Enable Register

Name: IER
Access Type: Write-only
Offset: 0x44
Reset value: -

31 30 29 28 27 26 25 24
I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16
I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8
| — | — | — | - | RXSYN | TXSYN | CP1 | CPO |
7 6 5 4 3 2 1 0
| RXBUFF | ENDRX | OVRUN | RXRDY | TXBUFE | ENDTX | TXEMPTY | TXRDY |

¢ RXSYN: Rx Sync Interrupt Enable
0: No effect.

1: Enables the Rx Sync Interrupt.

e TXSYN: Tx Sync Interrupt Enable
0: No effect.

1: Enables the Tx Sync Interrupt.

e CP1: Compare 1 Interrupt Enable
0: No effect.

1: Enables the Compare 1 Interrupt.

e CPO: Compare 0 Interrupt Enable
0: No effect.

1: Enables the Compare 0 Interrupt.

¢ RXBUFF: Receive Buffer Full Interrupt Enable
0: No effect.

1: Enables the Receive Buffer Full Interrupt.

¢ ENDRX: End of Reception Interrupt Enable
0: No effect.

1: Enables the End of Reception Interrupt.

e OVRUN: Receive Overrun Interrupt Enable
0: No effect.

1: Enables the Receive Overrun Interrupt.

¢ RXRDY: Receive Ready Interrupt Enable
0: No effect.

Alm L 387

32003M-AVR32-09/09 I ©

1: Enables the Receive Ready Interrupt.

¢ TXBUFE: Transmit Buffer Empty Interrupt Enable
0: No effect.

1: Enables the Transmit Buffer Empty Interrupt

¢ ENDTX: End of Transmission Interrupt Enable
0: No effect.

1: Enables the End of Transmission Interrupt.

e TXEMPTY: Transmit Empty Interrupt Enable
0: No effect.

1: Enables the Transmit Empty Interrupt.

e TXRDY: Transmit Ready Interrupt Enable
0: No effect.

1: Enables the Transmit Ready Interrupt.

Alm L 388

32003M-AVR32-09/09 I ©

23.9.15 Interrupt Disable Register

Name: IDR
Access Type: Write-only
Offset: 0x48
Reset value: -

31 30 29 28 27 26 25 24
I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16
I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8
| — | — | — | - | RXSYN | TXSYN | CP1 | CPO |
7 6 5 4 3 2 1 0
| RXBUFF | ENDRX | OVRUN | RXRDY | TXBUFE | ENDTX | TXEMPTY | TXRDY |

¢ RXSYN: Rx Sync Interrupt Enable
0: No effect.

1: Disables the Rx Sync Interrupt.

e TXSYN: Tx Sync Interrupt Enable
0: No effect.

1: Disables the Tx Sync Interrupt.

e CP1: Compare 1 Interrupt Disable
0: No effect.

1: Disables the Compare 1 Interrupt.

e CPO: Compare 0 Interrupt Disable
0: No effect.

1: Disables the Compare 0 Interrupt.

¢ RXBUFF: Receive Buffer Full Interrupt Disable
0: No effect.

1: Disables the Receive Buffer Full Interrupt.

¢ ENDRX: End of Reception Interrupt Disable
0: No effect.

1: Disables the End of Reception Interrupt.

e OVRUN: Receive Overrun Interrupt Disable
0: No effect.

1: Disables the Receive Overrun Interrupt.

¢ RXRDY: Receive Ready Interrupt Disable
0: No effect.

Alm L 389

32003M-AVR32-09/09 I ©

1: Disables the Receive Ready Interrupt.

* TXBUFE: Transmit Buffer Empty Interrupt Disable
0: No effect.

1: Disables the Transmit Buffer Empty Interrupt.

¢ ENDTX: End of Transmission Interrupt Disable
0: No effect.

1: Disables the End of Transmission Interrupt.

e TXEMPTY: Transmit Empty Interrupt Disable
0: No effect.

1: Disables the Transmit Empty Interrupt.

e TXRDY: Transmit Ready Interrupt Disable
0: No effect.

1: Disables the Transmit Ready Interrupt.

Alm L 390

32003M-AVR32-09/09 I ©

23.9.16 Interrupt Mask Register

Name: IMR

Access Type: Read-only

Offset: 0x4C

Reset value: 0x00000000
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| - | - | - | - | RXSYN | TXSYN | CP1 | CPO |
7 6 5 4 3 2 1 0

| RXBUFF | ENDRX | OVRUN | RXRDY | TXBUFE | ENDTX | TXEMPTY | TXRDY |

¢ RXSYN: Rx Sync Interrupt Mask
0: The Rx Sync Interrupt is disabled.

1: The Rx Sync Interrupt is enabled.

e TXSYN: Tx Sync Interrupt Mask
0: The Tx Sync Interrupt is disabled.

1: The Tx Sync Interrupt is enabled.

e CP1: Compare 1 Interrupt Mask
0: The Compare 1 Interrupt is disabled.

1: The Compare 1 Interrupt is enabled.

e CPO: Compare 0 Interrupt Mask
0: The Compare 0 Interrupt is disabled.

1: The Compare 0 Interrupt is enabled.

¢ RXBUFF: Receive Buffer Full Interrupt Mask
0: The Receive Buffer Full Interrupt is disabled.

1: The Receive Buffer Full Interrupt is enabled.

¢ ENDRX: End of Reception Interrupt Mask
0: The End of Reception Interrupt is disabled.

1: The End of Reception Interrupt is enabled.

e OVRUN: Receive Overrun Interrupt Mask
0: The Receive Overrun Interrupt is disabled.

1: The Receive Overrun Interrupt is enabled.

¢ RXRDY: Receive Ready Interrupt Mask
0: The Receive Ready Interrupt is disabled.

Alm L 391

32003M-AVR32-09/09 I ©

24. Universal Synchronous/Asynchronous Receiver/Transmitter (USART)

24.1 Features

24.2 Overview

32003M-AVR32-09/09

Rev: 3.0.2.3

* Programmable Baud Rate Generator
¢ 5- to 9-bit Full-duplex Synchronous or Asynchronous Serial Communications
- 1, 1.5 or 2 Stop Bits in Asynchronous Mode or 1 or 2 Stop Bits in Synchronous Mode
— Parity Generation and Error Detection
— Framing Error Detection, Overrun Error Detection
— MSB- or LSB-first
— Optional Break Generation and Detection
— By 8 or by 16 Over-sampling Receiver Frequency
— Optional Hardware Handshaking RTS-CTS
— Receiver Time-out and Transmitter Timeguard
— Optional Multidrop Mode with Address Generation and Detection
RS485 with Driver Control Signal
1SO7816, T = 0 or T = 1 Protocols for Interfacing with Smart Cards
— NACK Handling, Error Counter with Repetition and Iteration Limit
IrDA Modulation and Demodulation
— Communication at up to 115.2 Kbps
¢ Test Modes
— Remote Loopback, Local Loopback, Automatic Echo
¢ Supports Connection of Two Peripheral DMA Controller Channels (PDC)
Offers Buffer Transfer without Processor Intervention

The Universal Synchronous Asynchronous Receiver Transceiver (USART) provides one full
duplex universal synchronous asynchronous serial link. Data frame format is widely programma-
ble (data length, parity, number of stop bits) to support a maximum of standards. The receiver
implements parity error, framing error and overrun error detection. The receiver time-out enables
handling variable-length frames and the transmitter timeguard facilitates communications with
slow remote devices. Multidrop communications are also supported through address bit han-
dling in reception and transmission.

The USART features three test modes: remote loopback, local loopback and automatic echo.

The USART supports specific operating modes providing interfaces on RS485 buses, with
ISO7816 T = 0 or T = 1 smart card slots and infrared transceivers. The hardware handshaking
feature enables an out-of-band flow control by automatic management of the pins RTS and
CTS.

The USART supports the connection to the Peripheral DMA Controller, which enables data
transfers to the transmitter and from the receiver. The PDC provides chained buffer manage-
ment without any intervention of the processor.

AIMEL 392

Y 5

24.3 Block Diagram

Figure 24-1. USART Block Diagram

Peripheral DMA
Controller
Channel Channel
USART PIO
Controller
A4
< <—>|:| RXD
Receiver
> <—>|:| RTS
INTC USART > < —{_] ™o
« Interrupt Transmitter
< <—>|:| CcTs
CLK_USART
l > BaudRate <> <—>|:| CLK
Generator
Power DIV CLK_US>\RT/DIV
Manager
User
Interface

Peripheral bus +
-

Alm L 393

32003M-AVR32-09/09 I ©

24.4 Application Block Diagram

Figure 24-2. Application Block Diagram

24.5 1/0 Lines Description

PPP IrLAP
. Field Bus EMV
Serial Driver Driver IrPA
Driver Driver
USART
RS232 RS485 Smart IrDA
Drivers Drivers Card Transceivers
Slot
Serial Differential
Port Bus

Table 24-1. 1/O Line Description

Name Description Type Active Level
CLK Serial Clock I/O

TXD Transmit Serial Data I/0

RXD Receive Serial Data Input

CTS Clear to Send Input Low

RTS Request to Send Output Low

AIMEL 394

32003M-AVR32-09/09

Y 5

24.6 Product Dependencies

24.6.1 I/0 Lines

The pins used for interfacing the USART may be multiplexed with the PIO lines. The program-
mer must first program the PIO controller to assign the desired USART pins to their peripheral
function. If 1/O lines of the USART are not used by the application, they can be used for other
purposes by the PIO Controller.

To prevent the TXD line from falling when the USART is disabled, the use of an internal pull up
is mandatory.

24.6.2 Power Manager (PM)

24.6.3 Interrupt

32003M-AVR32-09/09

The USART is not continuously clocked. The programmer must ensure that the USART clock is
enabled in the Power Manager (PM) before using the USART. However, if the application does
not require USART operations, the USART clock can be stopped when not needed and be
restarted later. In this case, the USART will resume its operations where it left off. USART clock
(CLK_USART) in the USART description is the clock for the peripheral bus to which the USART
is connected.

The USART interrupt line is connected on one of the internal sources of the Interrupt Controller.
Using the USART interrupt requires the interrupt controller to be programmed first.

Alm L 395

Y 5

24.7 Functional Description

The USART is capable of managing several types of serial synchronous or asynchronous
communications.

It supports the following communication modes:

*5- to 9-bit full-duplex asynchronous serial communication
—MSB- or LSB-first
—1, 1.5 or 2 stop bits
—Parity even, odd, marked, space or none
—By 8 or by 16 over-sampling receiver frequency
—Optional hardware handshaking
—Optional break management
—Optional multidrop serial communication
*High-speed 5- to 9-bit full-duplex synchronous serial communication
—MSB- or LSB-first
—1 or 2 stop bits
—Parity even, odd, marked, space or none
—By 8 or by 16 over-sampling frequency
—Optional hardware handshaking
—Optional break management
—Optional multidrop serial communication
*RS485 with driver control signal
*|SO7816, TO or T1 protocols for interfacing with smart cards
—NACK handling, error counter with repetition and iteration limit
*InfraRed IrDA Modulation and Demodulation
*Test modes
—Remote loopback, local loopback, automatic echo
24.7.1 Baud Rate Generator

The Baud Rate Generator provides the bit period clock named the Baud Rate Clock to both the
receiver and the transmitter.

The Baud Rate Generator clock source can be selected by setting the USCLKS field in the Mode
Register (MR) between:
sthe CLK_USART
*a division of the CLK_USART, the divider being product dependent, but generally set to 8
sthe external clock, available on the CLK pin

The Baud Rate Generator is based upon a 16-bit divider, which is programmed with the CD field
of the Baud Rate Generator Register (BRGR). If CD is programmed at 0, the Baud Rate Gener-
ator does not generate any clock. If CD is programmed at 1, the divider is bypassed and
becomes inactive.

Alm L 396

32003M-AVR32-09/09 I ©

If the external CLK clock is selected, the duration of the low and high levels of the signal pro-
vided on the CLK pin must be longer than a CLK_USART period. The frequency of the signal
provided on CLK must be at least 4.5 times lower than CLK_USART.

Figure 24-3. Baud Rate Generator

CLK_USART/DIV

CLK

Reserved

USCLKS

CLK_USART

w N = O

[

CLK

SYNG
USCLKS= SD

24.7.1.1 Baud Rate in Asynchronous Mode

(]

CD
CD
16-bit Counter
»{>1 FIDI
SYNC
1, y—ljrovm L] [SyNC]
0—» 0 Sampling 0
Divider

BaudRate
Clock

Sampling

» Clock

If the USART is programmed to operate in asynchronous mode, the selected clock is first
divided by CD, which is field programmed in the Baud Rate Generator Register (BRGR). The
resulting clock is provided to the receiver as a sampling clock and then divided by 16 or 8,
depending on the programming of the OVER bit in MR.

If OVER is set to 1, the receiver sampling is 8 times higher than the baud rate clock. If OVER is
cleared, the sampling is performed at 16 times the baud rate clock.

The following formula performs the calculation of the Baud Rate.

Baudrate =

SelectedClock
(8(2 - 0Over)CD)

This gives a maximum baud rate of CLK_USART divided by 8, assuming that CLK_USART is
the highest possible clock and that OVER is programmed at 1.

24.7.1.2 Baud Rate Calculation Example
Table 24-2 shows calculations of CD to obtain a baud rate at 38400 bauds for different source
clock frequencies. This table also shows the actual resulting baud rate and the error.

Table 24-2. Baud Rate Example (OVER = 0)

32003M-AVR32-09/09

Expected Baud
Source Clock Rate Calculation Result CD Actual Baud Rate Error
MHz Bit/s Bit/s
3686 400 38 400 6.00 6 38 400.00 0.00%
4915 200 38 400 8.00 8 38 400.00 0.00%
5000 000 38 400 8.14 8 39 062.50 1.70%
AIMEL 397
Y ()

Table 24-2. Baud Rate Example (OVER = 0) (Continued)

Expected Baud
Source Clock Rate Calculation Result CD Actual Baud Rate Error
7 372 800 38 400 12.00 12 38 400.00 0.00%
8 000 000 38 400 13.02 13 38 461.54 0.16%
12 000 000 38 400 19.53 20 37 500.00 2.40%
12 288 000 38 400 20.00 20 38 400.00 0.00%
14 318 180 38 400 23.30 23 38 908.10 1.31%
14 745 600 38 400 24.00 24 38 400.00 0.00%
18 432 000 38 400 30.00 30 38 400.00 0.00%
24 000 000 38 400 39.06 39 38 461.54 0.16%
24 576 000 38 400 40.00 40 38 400.00 0.00%
25 000 000 38 400 40.69 40 38 109.76 0.76%
32 000 000 38 400 52.08 52 38 461.54 0.16%
32 768 000 38 400 53.33 53 38 641.51 0.63%
33 000 000 38 400 53.71 54 38 194.44 0.54%
40 000 000 38 400 65.10 65 38 461.54 0.16%
50 000 000 38 400 81.38 81 38 580.25 0.47%
60 000 000 38 400 97.66 98 38 265.31 0.35%
70 000 000 38 400 113.93 114 38 377.19 0.06%

The baud rate is calculated with the following formula:
BaudRate = (CLKUSART)/CD x 16

The baud rate error is calculated with the following formula. It is not recommended to work with
an error higher than 5%.

ExpectedBaudRale)

Error =1 _(ActualBaudRate

24.7.1.3 Fractional Baud Rate in Asynchronous Mode

The Baud Rate generator previously defined is subject to the following limitation: the output fre-
quency changes by only integer multiples of the reference frequency. An approach to this
problem is to integrate a fractional N clock generator that has a high resolution. The generator
architecture is modified to obtain Baud Rate changes by a fraction of the reference source clock.
This fractional part is programmed with the FP field in the Baud Rate Generator Register
(BRGR). If FP is not 0, the fractional part is activated. The resolution is one eighth of the clock
divider. This feature is only available when using USART normal mode. The fractional Baud
Rate is calculated using the following formula:

SelectedClock
(8(2 _ 0ver)(CD + %’D

AIMEL 398

32003M-AVR32-09/09 I ©

Baudrate =

AT32AP7000

The modified architecture is presented below:

Figure 24-4. Fractional Baud Rate Generator

.

Luses | oo)| et
e

CLK_USART

CLK
CLK_USART/DIV

Reserved 16-bit Counter glitch-free
CLK -) FIDI
logic >1 SYNC
— > SvER [svnc]

- O

N

[] 3
1 0
0—>» 0 Sampling
L Divider 0
BaudRate
1 — Clock

SYNC Sampling
USCLKS =3 » Clock

24.7.1.4 Baud Rate in Synchronous Mode

If the USART is programmed to operate in synchronous mode, the selected clock is simply
divided by the field CD in BRGR.

SelectedClock

BaudRate =
CD

In synchronous mode, if the external clock is selected (USCLKS = 3), the clock is provided
directly by the signal on the USART CLK pin. No division is active. The value written in BRGR
has no effect. The external clock frequency must be at least 4.5 times lower than the system
clock.

When either the external clock CLK or the internal clock divided (CLK_USART/DIV) is selected,
the value programmed in CD must be even if the user has to ensure a 50:50 mark/space ratio on
the CLK pin. If the internal clock CLK_USART is selected, the Baud Rate Generator ensures a
50:50 duty cycle on the CLK pin, even if the value programmed in CD is odd.

24.7.1.5 Baud Rate in ISO 7816 Mode
The 1SO7816 specification defines the bit rate with the following formula:
_Di,
=7
where:

*B is the bit rate

Di is the bit-rate adjustment factor

*Fi is the clock frequency division factor
of is the ISO7816 clock frequency (Hz)

Alm L 399

32003M-AVR32-09/09 I ©

Di is a binary value encoded on a 4-bit field, named DI, as represented in Table 24-3.

Table 24-3. Binary and Decimal Values for Di
Dl field 0001 0010 0011 0100 0101 0110 1000 1001
Di (decimal) 1 2 4 8 16 32 12 20
Fi is a binary value encoded on a 4-bit field, named Fl, as represented in Table 24-4.
Table 24-4. Binary and Decimal Values for Fi
Fl field 0000 0001 0010 0011 0100 0101 0110 1001 1010 1011 1100 1101
Fi (decimal 372 372 558 744 1116 1488 1860 512 768 1024 1536 2048
Table 24-5 shows the resulting Fi/Di Ratio, which is the ratio between the ISO7816 clock and the
baud rate clock.
Table 24-5. Possible Values for the Fi/Di Ratio
Fi/Di 372 558 774 1116 1488 1806 512 768 1024 1536 2048
1 372 558 744 1116 1488 1860 512 768 1024 1536 2048
2 186 279 372 558 744 930 256 384 512 768 1024
4 93 139.5 186 279 372 465 128 192 256 384 512
8 46.5 69.75 93 139.5 186 232.5 64 96 128 192 256
16 23.25 34.87 46.5 69.75 93 116.2 32 48 64 96 128
32 11.62 17.43 23.25 34.87 46.5 58.13 16 24 32 48 64
12 31 46.5 62 93 124 155 42.66 64 85.33 128 170.6
20 18.6 27.9 37.2 55.8 74.4 93 25.6 38.4 51.2 76.8 102.4

32003M-AVR32-09/09

If the USART is configured in ISO7816 Mode, the clock selected by the USCLKS field in the
Mode Register (MR) is first divided by the value programmed in the field CD in the Baud Rate
Generator Register (BRGR). The resulting clock can be provided to the CLK pin to feed the
smart card clock inputs. This means that the CLKO bit can be set in MR.

This clock is then divided by the value programmed in the FI_DI_RATIO field in the FI_DI_Ratio
register (FIDI). This is performed by the Sampling Divider, which performs a division by up to
2047 in ISO7816 Mode. The non-integer values of the Fi/Di Ratio are not supported and the user
must program the FI_DI_RATIO field to a value as close as possible to the expected value.

The FI_DI_RATIO field resets to the value 0x174 (372 in decimal) and is the most common
divider between the ISO7816 clock and the bit rate (Fi = 372, Di = 1).

Figure 24-5 shows the relation between the Elementary Time Unit, corresponding to a bit time,
and the I1SO 7816 clock.

ATMEL

Y 5

400

AT32AP7000

Figure 24-5. Elementary Time Unit (ETU)

24.7.2

24.7.3

24.7.3.1

32003M-AVR32-09/09

)7816 1/0 Line
on TXD

FI_DI_RATIO
1SO7816 Clock Cycles
i »
< »

sorsegy TR
((

))

1ETU

< »
< >

Receiver and Transmitter Control

After reset, the receiver is disabled. The user must enable the receiver by setting the RXEN bit
in the Control Register (CR). However, the receiver registers can be programmed before the
receiver clock is enabled.

After reset, the transmitter is disabled. The user must enable it by setting the TXEN bit in the
Control Register (CR). However, the transmitter registers can be programmed before being
enabled.

The Receiver and the Transmitter can be enabled together or independently.

At any time, the software can perform a reset on the receiver or the transmitter of the USART by
setting the corresponding bit, RSTRX and RSTTX respectively, in the Control Register (CR).
The reset commands have the same effect as a hardware reset on the corresponding logic.
Regardless of what the receiver or the transmitter is performing, the communication is immedi-
ately stopped.

The user can also independently disable the receiver or the transmitter by setting RXDIS and
TXDIS respectively in CR. If the receiver is disabled during a character reception, the USART
waits until the end of reception of the current character, then the reception is stopped. If the
transmitter is disabled while it is operating, the USART waits the end of transmission of both the
current character and character being stored in the Transmit Holding Register (THR). If a time-
guard is programmed, it is handled normally.

Synchronous and Asynchronous Modes

Transmitter Operations

The transmitter performs the same in both synchronous and asynchronous operating modes
(SYNC = 0 or SYNC = 1). One start bit, up to 9 data bits, one optional parity bit and up to two
stop bits are successively shifted out on the TXD pin at each falling edge of the programmed
serial clock.

The number of data bits is selected by the CHRL field and the MODE 9 bit in the Mode Register
(MR). Nine bits are selected by setting the MODE 9 bit regardless of the CHRL field. The parity
bit is set according to the PAR field in MR. The even, odd, space, marked or none parity bit can
be configured. The MSBF field in MR configures which data bit is sent first. If written at 1, the
most significant bit is sent first. At 0, the less significant bit is sent first. The number of stop bits is
selected by the NBSTORP field in MR. The 1.5 stop bit is supported in asynchronous mode only.

Alm L 401

Y 5

AT32AP7000

Figure 24-6. Character Transmit

Example: 8-bit, Parity Enabled One Stop

> oo SlEpEREREpEREREEEEEN

TXD

‘Start DO D1 D2 D3 D4 D5 D6 D7 | Parity Stop
Bit Bit Bit

The characters are sent by writing in the Transmit Holding Register (THR). The transmitter
reports two status bits in the Channel Status Register (CSR): TXRDY (Transmitter Ready),
which indicates that THR is empty and TXEMPTY, which indicates that all the characters written
in THR have been processed. When the current character processing is completed, the last
character written in THR is transferred into the Shift Register of the transmitter and THR
becomes empty, thus TXRDY raises.

Both TXRDY and TXEMPTY bits are low since the transmitter is disabled. Writing a character in
THR while TXRDY is active has no effect and the written character is lost.

Figure 24-7. Transmitter Status

Baud Rate

Clock I|IlI|||IlIlllllll_ll_ll_ll_ll_ll_ll_ll_ll—ll—ll—ll—ll—ll—ll—ll
o L T TTTTTTTT LTI TITITITTIT]

S:;? DO DI D2 D3 D4 D5 D D7 "aiyStopStat . ny p3 ps ps pe py PSP

Bit Bit Bit Bit Bit
Write
US_THR T T

TXRDY —l_l | I
TXEMPTY _| |_

24.7.3.2 Manchester Encoder

When the Manchester encoder is in use, characters transmitted through the USART are
encoded based on biphase Manchester Il format. To enable this mode, set the MAN field in the
MR register to 1. Depending on polarity configuration, a logic level (zero or one), is transmitted
as a coded signal one-to-zero or zero-to-one. Thus, a transition always occurs at the midpoint of
each bit time. It consumes more bandwidth than the original NRZ signal (2x) but the receiver has
more error control since the expected input must show a change at the center of a bit cell. An
example of Manchester encoded sequence is: the byte 0xB1 or 10110001 encodes to 10 01 10

10 01 01 01 10, assuming the default polarity of the encoder. Figure 24-8 illustrates this coding
scheme.

Alm L 402

32003M-AVR32-09/09 I ©

AT32AP7000

Figure 24-8. NRZ to Manchester Encoding

NRZ
encoded

e L T I I
I I I I I 1
] I | |
data | | | 0 | ;
Manchester L ! L ! L [
encoded Ty(: | ! | : ! : | I

data

1 0

The Manchester encoded character can also be encapsulated by adding both a configurable
preamble and a start frame delimiter pattern. Depending on the configuration, the preamble is a
training sequence, composed of a pre-defined pattern with a programmable length from 1 to 15
bit times. If the preamble length is set to 0, the preamble waveform is not generated prior to any
character. The preamble pattern is chosen among the following sequences: ALL_ONE,
ALL_ZERO, ONE_ZERO or ZERO_ONE, writing the field TX_PP in the MAN register, the field
TX_PL is used to configure the preamble length. Figure 24-9 illustrates and defines the valid
patterns. To improve flexibility, the encoding scheme can be configured using the TX_MPOL
field in the MAN register. If the TX_MPOL field is set to zero (default), a logic zero is encoded
with a zero-to-one transition and a logic one is encoded with a one-to-zero transition. If the
TX_MPOL field is set to one, a logic one is encoded with a one-to-zero transition and a logic
zero is encoded with a zero-to-one transition.

Figure 24-9. Preamble Patterns, Default Polarity Assumed

I
Manchester ! ! ! ! I ! ! ! e e -
]
I

encoded | | | | | | | | | | | | | | | -
data Txd SFD _D_A-I_—A_ -
I I I I I I I I I
8 bit width "ALL_ONE" Preamble
I I I I I I I I I
Manchester ! ! ! ! ! ! ! ! e e .
encoded DATA
data 1xd SFD | _PAIA .
I I I I I I I I I
8 bit width "ALL_ZERQ" Preamble
I I I I I I I I I
Manchester ! : : : : : : : e -
encoded Txd l | 1 | | | 1 | | | 1 | | | 1 SFD DATA
data T — @ - - @ Y , === ==--
I I I I I I I I I
8 bit width "ZERO_ONE" Preamble
I I I I I I I I I
Manchester : : : : : : : : e e .
encoded Txd | | 1 | I | 1 | I | 1 | I | 1 SFD _D_A-I_-A_ .
data I I I I I I I

8 bit width "ONE_ZEROQO" Preamble

A start frame delimiter is to be configured using the ONEBIT field in the MR register. It consists
of a user-defined pattern that indicates the beginning of a valid data. Figure 24-10 illustrates
these patterns. If the start frame delimiter, also known as start bit, is one bit, (ONEBIT at 1), a
logic zero is Manchester encoded and indicates that a new character is being sent serially on the
line. If the start frame delimiter is a synchronization pattern also referred to as sync (ONEBIT at
0), a sequence of 3 bit times is sent serially on the line to indicate the start of a new character.

Alm L 403

32003M-AVR32-09/09 I ©

The sync waveform is in itself an invalid Manchester waveform as the transition occurs at the
middle of the second bit time. Two distinct sync patterns are used: the command sync and the
data sync. The command sync has a logic one level for one and a half bit times, then a transition
to logic zero for the second one and a half bit times. If the MODSYNC field in the MR register is
set to 1, the next character is a command. If it is set to 0, the next character is a data. When
direct memory access is used, the MODSYNC field can be immediately updated with a modified
character located in memory. To enable this mode, VAR_SYNC field in MR register must be set
to 1. In this case, the MODSYNC field in MR is bypassed and the sync configuration is held in
the TXSYNH in the THR register. The USART character format is modified and includes sync
information.

Figure 24-10. Start Frame Delimiter

Preamble Length

issetto 0
—
SFD
Manchester : ! o ____
encoded | | |_ DATA
data 1xd : ——————————

SFD
Manchester : : : : D e e e o=
encoded DATA
Txd | I I | I |
data | | | | T T T T T ST T T
Command Sync
SFD start frame delimiter
Manchester : ! : : | e m -
encoded | | | DATA
data 1xd : | : : """"""""

Data Sync
start frame delimiter

24.7.3.3 Drift Compensation

32003M-AVR32-09/09

Drift compensation is available only in 16X oversampling mode. An hardware recovery system
allows a larger clock drift. To enable the hardware system, the bit in the MAN register must be
set. If the RXD edge is one 16X clock cycle from the expected edge, this is considered as nor-
mal jitter and no corrective actions is taken. If the RXD event is between 4 and 2 clock cycles
before the expected edge, then the current period is shortened by one clock cycle. If the RXD
event is between 2 and 3 clock cycles after the expected edge, then the current period is length-
ened by one clock cycle. These intervals are considered to be drift and so corrective actions are
automatically taken.

Alm L 404

Y 5

Figure 24-11. Bit Resynchronization

Oversampling
16x Clock

1

| I
| ' |
Sampling T ! | E | ! T
| ' |
| f |
| |

point

O

Expected edge

< J< synchro. ok Tolerance 4‘ Sync>k Synchro. >
Synchro. Jump Jump Error
Error

24.7.3.4 Asynchronous Receiver

If the USART is programmed in asynchronous operating mode (SYNC = 0), the receiver over-
samples the RXD input line. The oversampling is either 16 or 8 times the Baud Rate clock,
depending on the OVER bit in the Mode Register (MR).

The receiver samples the RXD line. If the line is sampled during one half of a bit time at 0, a start
bit is detected and data, parity and stop bits are successively sampled on the bit rate clock.

If the oversampling is 16, (OVER at 0), a start is detected at the eighth sample at 0. Then, data
bits, parity bit and stop bit are sampled on each 16 sampling clock cycle. If the oversampling is 8
(OVER at 1), a start bit is detected at the fourth sample at 0. Then, data bits, parity bit and stop
bit are sampled on each 8 sampling clock cycle.

The number of data bits, first bit sent and parity mode are selected by the same fields and bits
as the transmitter, i.e. respectively CHRL, MODE9, MSBF and PAR. The number of stop bits
has no effect on the receiver as it considers only one stop bit, regardless of the field NBSTOP,
so that resynchronization between the receiver and the transmitter can occur. Moreover, as
soon as the stop bit is sampled, the receiver starts looking for a new start bit so that resynchroni-
zation can also be accomplished when the transmitter is operating with one stop bit.

Figure 24-12 and Figure 24-13 illustrate start detection and character reception when USART
operates in asynchronous mode.

Alm L 405

32003M-AVR32-09/09 I ©

Figure 24-12. Asynchronous Start Detection

| I | -
Clock (x16)
o i
R N N A O I I O
2 3 4 5 6 7 8

1

Lt
1 2 3 4 5 6 7 8 910111213141516DO
Start Sampling
Detection

RXD—”
LU

1 1

11

3 4
Start

Rejection

Figure 24-13. Asynchronous Character Reception

Example: 8-bit, Parity Enabled

> G JEpEEEEERERE NN,
o S TTTI T T T T TT T

Start
Detection

16 16 16 16 16 16 16 16 16 16
samples|samples|samples|samples|samples|samples|samples|samples|samples|samples

DO D1 D2 D3 D4 D5 D6 D7 Parity Stop
Bit Bit

24.7.3.5 Manchester Decoder

When the MAN field in MR register is set to 1, the Manchester decoder is enabled. The decoder
performs both preamble and start frame delimiter detection. One input line is dedicated to Man-
chester encoded input data.

An optional preamble sequence can be defined, its length is user-defined and totally indepen-
dent of the emitter side. Use RX_PL in MAN register to configure the length of the preamble
sequence. If the length is set to 0, no preamble is detected and the function is disabled. In addi-
tion, the polarity of the input stream is programmable with RX_MPOL field in MAN register.
Depending on the desired application the preamble pattern matching is to be defined via the
RX_PP field in MAN. See Figure 24-9 for available preamble patterns.

Unlike preamble, the start frame delimiter is shared between Manchester Encoder and Decoder.
So, if ONEBIT field is set to 1, only a zero encoded Manchester can be detected as a valid start
frame delimiter. If ONEBIT is set to 0, only a sync pattern is detected as a valid start frame
delimiter. Decoder operates by detecting transition on incoming stream. If RXD is sampled dur-
ing one quarter of a bit time at zero, a start bit is detected. See Figure 24-14. The sample pulse
rejection mechanism applies.

Alm L 406

32003M-AVR32-09/09 I ©

Figure 24-14. Asynchronous Start Bit Detection

Sampling
Clock ||
(16X) |
Manchester I ||| |
encoded |
data TXd:
I
I

T T T Start
Detection
4

1 2 3

The receiver is activated and starts Preamble and Frame Delimiter detection, sampling the data
at one quarter and then three quarters. If a valid preamble pattern or start frame delimiter is
detected, the receiver continues decoding with the same synchronization. If the stream does not
match a valid pattern or a valid start frame delimiter, the receiver re-synchronizes on the next
valid edge.The minimum time threshold to estimate the bit value is three quarters of a bit time.

If a valid preambile (if used) followed with a valid start frame delimiter is detected, the incoming
stream is decoded into NRZ data and passed to USART for processing. Figure 24-15 illustrates
Manchester pattern mismatch. When incoming data stream is passed to the USART, the
receiver is also able to detect Manchester code violation. A code violation is a lack of transition
in the middle of a bit cell. In this case, MANE flag in CSR register is raised. It is cleared by writing
the Control Register (CR) with the RSTSTA bit at 1. See Figure 24-16 for an example of Man-
chester error detection during data phase.

Figure 24-15. Preamble Pattern Mismatch

Preamble Mismatch Preamble Mismatch
Manchester coding error invalid pattern

//

Manchester !
data

I ! !
[| S
T T I 1 I

|] I]

| 1 1 1

Preamble Length is set to 8

Figure 24-16. Manchester Error Flag

32003M-AVR32-09/09

Manchester
encoded
data

Preamble Length
is setto 4

Elementary character bit time
I 1 I SFD | «— I

I
SRS I A O) I O O
Txd |

1
[
1
1 1 1 1 1 1
| | | | |Entering USART character area |
1 1 1 1 T T

oo P QP PR PEYEEEEYEELS
N

Preamble subpacket Manchester

and Start Frame Delimiter Coding Error

were successfully detected
decoded

When the start frame delimiter is a sync pattern (ONEBIT field at 0), both command and data
delimiter are supported. If a valid sync is detected, the received character is written as RXCHR

Alm L 407

Y 5

field in the RHR register and the RXSYNH is updated. RXCHR is set to 1 when the received
character is a command, and it is set to 0O if the received character is a data. This mechanism
alleviates and simplifies the direct memory access as the character contains its own sync field in
the same register.

As the decoder is setup to be used in unipolar mode, the first bit of the frame has to be a zero-to-
one transition.

24.7.3.6 Radio Interface: Manchester Encoded USART Application

This section describes low data rate RF transmission systems and their integration with a Man-
chester encoded USART. These systems are based on transmitter and receiver ICs that support
ASK and FSK modulation schemes.

The goal is to perform full duplex radio transmission of characters using two different frequency
carriers. See the configuration in Figure 24-17.

Figure 24-17. Manchester Encoded Characters RF Transmission

Fup frequency Carrier) > > >

Upstream
Emitter

ASK/FSK
Upstream Receiver

LNA

Downstream
Receiver

Fdown frequency Carrier (((

Serial
Configuration
Interface

VCO
RF filter
Demod

Manchester | _] USART
bi-dir decoder Receiver

line

ASK/FSK
downstream transmitter

Manchester |_] USART
encoder Emitter

32003M-AVR32-09/09

PA

RF filter
Mod
VCO

The USART module is configured as a Manchester encoder/decoder. Looking at the down-
stream communication channel, Manchester encoded characters are serially sent to the RF
emitter. This may also include a user defined preamble and a start frame delimiter. Mostly, pre-
amble is used in the RF receiver to distinguish between a valid data from a transmitter and
signals due to noise. The Manchester stream is then modulated. See Figure 24-18 for an exam-
ple of ASK modulation scheme. When a logic one is sent to the ASK modulator, the power
amplifier, referred to as PA, is enabled and transmits an RF signal at downstream frequency.
When a logic zero is transmitted, the RF signal is turned off. If the FSK modulator is activated,
two different frequencies are used to transmit data. When a logic 1 is sent, the modulator out-
puts an RF signal at frequency FO and switches to F1 if the data sent is a 0. See Figure 24-19.

From the receiver side, another carrier frequency is used. The RF receiver performs a bit check
operation examining demodulated data stream. If a valid pattern is detected, the receiver
switches to receiving mode. The demodulated stream is sent to the Manchester decoder.
Because of bit checking inside RF IC, the data transferred to the microcontroller is reduced by a

Alm L 408

Y 5

user-defined number of bits. The Manchester preamble length is to be defined in accordance
with the RF IC configuration.

Figure 24-18. ASK Modulator Output

NRZ stream

Manchester
encoded

data

default polarity
unipolar output

ASK Modulator
Output
Uptstream Frequency FO

1 1

Txd

Figure 24-19. FSK Modulator Output

NRZ stream

Manchester
encoded

data

default polarity
unipolar output

FSK Modulator

Output

Uptstream Frequencies
[FO, FO+offset]

1 1

Txd

24.7.3.7 Synchronous Receiver

In synchronous mode (SYNC = 1), the receiver samples the RXD signal on each rising edge of
the Baud Rate Clock. If a low level is detected, it is considered as a start. All data bits, the parity
bit and the stop bits are sampled and the receiver waits for the next start bit. Synchronous mode
operations provide a high speed transfer capability.

Configuration fields and bits are the same as in asynchronous mode.

Figure 24-20 illustrates a character reception in synchronous mode.

Figure 24-20. Synchronous Mode Character Reception

Example: 8-bit, Parity Enabled 1 Stop

Baud Rate

RXD _|

Clock

[L

JEpSpEEEEEREEN

Sampling |

32003M-AVR32-09/09

Start

DO

D1

D2 D3 D4 D5 D6 D7 Stop Bit
Parity Bit

AIMEL 409

Y 5

24.7.3.8

Receiver Operations

When a character reception is completed, it is transferred to the Receive Holding Register
(RHR) and the RXRDY bit in the Status Register (CSR) rises. If a character is completed while
the RXRDY is set, the OVRE (Overrun Error) bit is set. The last character is transferred into
RHR and overwrites the previous one. The OVRE bit is cleared by writing the Control Register
(CR) with the RSTSTA (Reset Status) bit at 1.

Figure 24-21. Receiver Status

Baud Rate
Clock

o | [TTTTTTTT]

Start
Bit

Write

DO DI D2 D3 D4 D5 D6 D7 Pg'i't‘ysjip

DO Di D2 D3 D4 D5 D6 D7 Pg’i'ttySJ’pS‘a" !

it Bit
RSTSTA =1

US_CR

Read

US_RHR

RXRDY

OVRE _|

32003M-AVR32-09/09

410

ATMEL

Y 5

24.7.3.9 Parity

32003M-AVR32-09/09

The USART supports five parity modes selected by programming the PAR field in the Mode
Register (MR). The PAR field also enables the Multidrop mode, see "Multidrop Mode” on page
412. Even and odd parity bit generation and error detection are supported.

If even parity is selected, the parity generator of the transmitter drives the parity bit at O if a num-
ber of 1s in the character data bit is even, and at 1 if the number of 1s is odd. Accordingly, the
receiver parity checker counts the number of received 1s and reports a parity error if the sam-
pled parity bit does not correspond. If odd parity is selected, the parity generator of the
transmitter drives the parity bit at 1 if a number of 1s in the character data bit is even, and at O if
the number of 1s is odd. Accordingly, the receiver parity checker counts the number of received
1s and reports a parity error if the sampled parity bit does not correspond. If the mark parity is
used, the parity generator of the transmitter drives the parity bit at 1 for all characters. The
receiver parity checker reports an error if the parity bit is sampled at 0. If the space parity is
used, the parity generator of the transmitter drives the parity bit at O for all characters. The
receiver parity checker reports an error if the parity bit is sampled at 1. If parity is disabled, the
transmitter does not generate any parity bit and the receiver does not report any parity error.

Table 24-6 shows an example of the parity bit for the character 0x41 (character ASCII “A”)
depending on the configuration of the USART. Because there are two bits at 1, 1 bit is added
when a parity is odd, or 0 is added when a parity is even.

Table 24-6. Parity Bit Examples

Character Hexa Binary Parity Bit Parity Mode
A 0x41 0100 0001 1 Odd
A 0x41 0100 0001 0 Even
A 0x41 0100 0001 1 Mark
A Ox41 0100 0001 0 Space
A 0x41 0100 0001 None None

When the receiver detects a parity error, it sets the PARE (Parity Error) bit in the Channel Status
Register (CSR). The PARE bit can be cleared by writing the Control Register (CR) with the RST-
STA bit at 1. Figure 24-22 illustrates the parity bit status setting and clearing.

Alm L 411

Y 5

AT32AP7000

Figure 24-22. Parity Error

24.7.3.10

24.7.3.11

32003M-AVR32-09/09

Baud Rate
Clock Illlllllllllllllllllll |||||||||||||
Ao] [T T T T T TTT00

Sg"n“ DO DI D2 D3 D4 D5 D6 D7 Pz"ii‘t’yséi’tp
Bit RSTSTA=1
Write T

US_CR

PARE |_
RXRDY _|

Multidrop Mode

If the PAR field in the Mode Register (MR) is programmed to the value 0x6 or 0x07, the USART
runs in Multidrop Mode. This mode differentiates the data characters and the address charac-
ters. Data is transmitted with the parity bit at 0 and addresses are transmitted with the parity bit
at 1.

If the USART is configured in multidrop mode, the receiver sets the PARE parity error bit when
the parity bit is high and the transmitter is able to send a character with the parity bit high when
the Control Register is written with the SENDA bit at 1.

To handle parity error, the PARE bit is cleared when the Control Register is written with the bit
RSTSTA at 1.

The transmitter sends an address byte (parity bit set) when SENDA is written to CR. In this case,
the next byte written to THR is transmitted as an address. Any character written in THR without
having written the command SENDA is transmitted normally with the parity at 0.

Transmitter Timeguard

The timeguard feature enables the USART interface with slow remote devices.

The timeguard function enables the transmitter to insert an idle state on the TXD line between
two characters. This idle state actually acts as a long stop bit.

The duration of the idle state is programmed in the TG field of the Transmitter Timeguard Regis-
ter (TTGR). When this field is programmed at zero no timeguard is generated. Otherwise, the
transmitter holds a high level on TXD after each transmitted byte during the number of bit peri-
ods programmed in TG in addition to the number of stop bits.

As illustrated in Figure 24-23, the behavior of TXRDY and TXEMPTY status bits is modified by
the programming of a timeguard. TXRDY rises only when the start bit of the next character is
sent, and thus remains at 0 during the timeguard transmission if a character has been written in
THR. TXEMPTY remains low until the timeguard transmission is completed as the timeguard is
part of the current character being transmitted.

Alm L 412

Y 5

AT32AP7000

Figure 24-23. Timeguard Operations

Baud Rate
Clock

TXD

Write
US_THR

TXRDY

TXEMPTY

24.7.3.12

LT TTTTITTT] HEEEEEEEN

Start
Bit

1

DO D1 D2 D3 D4 D5 D6 D7

Parity Stop| Start Parity Stop
Bit Bit Bit DO D1 D2 D3 D4 D5 D6 D7 Bit Bit

1

U
-

Table 24-7 indicates the maximum length of a timeguard period that the transmitter can handle
in relation to the function of the Baud Rate.

Table 24-7. Maximum Timeguard Length Depending on Baud Rate

Baud Rate Bit time Timeguard
Bit/sec ps ms
1200 833 212.50
9 600 104 26.56
14400 69.4 17.71
19200 52.1 13.28
28800 34.7 8.85
33400 29.9 7.63
56000 17.9 4.55
57600 17.4 4.43
115200 8.7 2.21

Receiver Time-out

32003M-AVR32-09/09

The Receiver Time-out provides support in handling variable-length frames. This feature detects
an idle condition on the RXD line. When a time-out is detected, the bit TIMEOUT in the Channel
Status Register (CSR) rises and can generate an interrupt, thus indicating to the driver an end of
frame.

The time-out delay period (during which the receiver waits for a new character) is programmed
in the TO field of the Receiver Time-out Register (RTOR). If the TO field is programmed at 0, the
Receiver Time-out is disabled and no time-out is detected. The TIMEOUT bit in CSR remains at
0. Otherwise, the receiver loads a 16-bit counter with the value programmed in TO. This counter
is decremented at each bit period and reloaded each time a new character is received. If the
counter reaches 0, the TIMEOUT bit in the Status Register rises.

The user can either:

Alm L 413

Y 5

*Obtain an interrupt when a time-out is detected after having received at least one character.

This is performed by writing the Control Register (CR) with the STTTO (Start Time-out) bit at
1.

*Obtain a periodic interrupt while no character is received. This is performed by writing CR with
the RETTO (Reload and Start Time-out) bit at 1.

If STTTO is performed, the counter clock is stopped until a first character is received. The idle
state on RXD before the start of the frame does not provide a time-out. This prevents having to

obtain a periodic interrupt and enables a wait of the end of frame when the idle state on RXD is
detected.

If RETTO is performed, the counter starts counting down immediately from the value TO. This

enables generation of a periodic interrupt so that a user time-out can be handled, for example
when no key is pressed on a keyboard.

Figure 24-24 shows the block diagram of the Receiver Time-out feature.

Figure 24-24. Receiver Time-out Block Diagram

Baud Rate |I|

Clock
16-bit
1—p q Clock 16-bit Time-out Value
Counter
STTTO S = TIMEOUT
Load 0 —
Clear
Character
Received
RETTO

Table 24-8 gives the maximum time-out period for some standard baud rates.

Table 24-8. Maximum Time-out Period

Baud Rate Bit Time Time-out
bit/sec us ms
600 1 667 109 225
1200 833 54 613
2400 417 27 306
4 800 208 13653
9 600 104 6 827
14400 69 4 551
19200 52 3413
28800 35 2276
33400 30 1962
56000 18 1170
57600 17 1138
200000 5 328

Alm L 414

32003M-AVR32-09/09 I ©

24.7.3.13 Framing Error

The receiver is capable of detecting framing errors. A framing error happens when the stop bit of
a received character is detected at level 0. This can occur if the receiver and the transmitter are
fully desynchronized.

A framing error is reported on the FRAME bit of the Channel Status Register (CSR). The
FRAME bit is asserted in the middle of the stop bit as soon as the framing error is detected. It is
cleared by writing the Control Register (CR) with the RSTSTA bit at 1.

Figure 24-25. Framing Error Status

Baud Rate
Clock Illlllllllllllllllllll |||||||||||||
o] [T TTTTTTTI]

Start Parity Stpp
Bit Do D1 D2 D3 D4 D5 D6 D7 Bit |it

RSTSTA=1
Write T
US_CR

FRAME |_
RXRDY _|

24.7.3.14 Transmit Break

The user can request the transmitter to generate a break condition on the TXD line. A break con-
dition drives the TXD line low during at least one complete character. It appears the same as a
0x00 character sent with the parity and the stop bits at 0. However, the transmitter holds the
TXD line at least during one character until the user requests the break condition to be removed.

A break is transmitted by writing the Control Register (CR) with the STTBRK bit at 1. This can be
performed at any time, either while the transmitter is empty (no character in either the Shift Reg-
ister or in THR) or when a character is being transmitted. If a break is requested while a
character is being shifted out, the character is first completed before the TXD line is held low.

Once STTBRK command is requested further STTBRK commands are ignored until the end of
the break is completed.

The break condition is removed by writing CR with the STPBRK bit at 1. If the STPBRK is
requested before the end of the minimum break duration (one character, including start, data,
parity and stop bits), the transmitter ensures that the break condition completes.

The transmitter considers the break as though it is a character, i.e. the STTBRK and STPBRK
commands are taken into account only if the TXRDY bit in CSR is at 1 and the start of the break
condition clears the TXRDY and TXEMPTY bits as if a character is processed.

Writing CR with the both STTBRK and STPBRK bits at 1 can lead to an unpredictable result. All
STPBRK commands requested without a previous STTBRK command are ignored. A byte writ-
ten into the Transmit Holding Register while a break is pending, but not started, is ignored.

Alm L 415

32003M-AVR32-09/09 I ©

After the break condition, the transmitter returns the TXD line to 1 for a minimum of 12 bit times.
Thus, the transmitter ensures that the remote receiver detects correctly the end of break and the
start of the next character. If the timeguard is programmed with a value higher than 12, the TXD
line is held high for the timeguard period.

After holding the TXD line for this period, the transmitter resumes normal operations.

Figure 24-26 illustrates the effect of both the Start Break (STTBRK) and Stop Break (STPBRK)
commands on the TXD line.

Figure 24-26. Break Transmission

Baud Rate
Clock

TXD _|

[Uiuyruvuiriuvvduivvyuvuvuvduuuut
HEEEEEEN

Start
Bit

Write
US_CR

Parity Stop
Bit Bit
STTBRK = 1 STPBRK = 1

1

DO Di D2 D3 D4 D5 D6 D7 Break Transmission End of Break

TXRDY

TXEMPTY _|

]

24.7.3.15 Receive Break

The receiver detects a break condition when all data, parity and stop bits are low. This corre-
sponds to detecting a framing error with data at 0x00, but FRAME remains low.

When the low stop bit is detected, the receiver asserts the RXBRK bit in CSR. This bit may be
cleared by writing the Control Register (CR) with the bit RSTSTA at 1.

An end of receive break is detected by a high level for at least 2/16 of a bit period in asynchro-
nous operating mode or one sample at high level in synchronous operating mode. The end of
break detection also asserts the RXBRK bit.

24.7.3.16 Hardware Handshaking

The USART features a hardware handshaking out-of-band flow control. The RTS and CTS pins
are used to connect with the remote device, as shown in Figure 24-27.

Figure 24-27. Connection with a Remote Device for Hardware Handshaking

32003M-AVR32-09/09

USART Remote
Device
TXD RXD
RXD |« TXD
CTS |« RTS
RTS CTS

Alm L 416

Y 5

Setting the USART to operate with hardware handshaking is performed by writing the MODE
field in the Mode Register (MR) to the value 0x2.

The USART behavior when hardware handshaking is enabled is the same as the behavior in
standard synchronous or asynchronous mode, except that the receiver drives the RTS pin as
described below and the level on the CTS pin modifies the behavior of the transmitter as
described below. Using this mode requires using the PDC channel for reception. The transmitter
can handle hardware handshaking in any case.

Figure 24-28 shows how the receiver operates if hardware handshaking is enabled. The RTS
pin is driven high if the receiver is disabled and if the status RXBUFF (Receive Buffer Full) com-
ing from the PDC channel is high. Normally, the remote device does not start transmitting while
its CTS pin (driven by RTS) is high. As soon as the Receiver is enabled, the RTS falls, indicating
to the remote device that it can start transmitting. Defining a new buffer to the PDC clears the
status bit RXBUFF and, as a result, asserts the pin RTS low.

Figure 24-28. Receiver Behavior when Operating with Hardware Handshaking

RXD [|

RXEN =1
Write
US_CR /T

RXDIS =1

\
RTS _|

\

RXBUFF

A | T
KI (I

Figure 24-29 shows how the transmitter operates if hardware handshaking is enabled. The CTS
pin disables the transmitter. If a character is being processing, the transmitter is disabled only
after the completion of the current character and transmission of the next character happens as
soon as the pin CTS falls.

Figure 24-29. Transmitter Behavior when Operating with Hardware Handshaking

2474

24.7.4

ISO7816 Mode

- T——

™0 U | L |

The USART features an ISO7816-compatible operating mode. This mode permits interfacing
with smart cards and Security Access Modules (SAM) communicating through an ISO7816 link.
Both T=0and T = 1 protocols defined by the ISO7816 specification are supported.

Setting the USART in ISO7816 mode is performed by writing the MODE field in the Mode Regis-
ter (MR) to the value 0x4 for protocol T = 0 and to the value 0x5 for protocol T = 1.

.1 1SO7816 Mode Overview

32003M-AVR32-09/09

The 1SO7816 is a half duplex communication on only one bidirectional line. The baud rate is
determined by a division of the clock provided to the remote device (see "Baud Rate Generator”
on page 396).

Alm L 417

Y 5

The USART connects to a smart card as shown in Figure 24-30. The TXD line becomes bidirec-
tional and the Baud Rate Generator feeds the 1ISO7816 clock on the CLK pin. As the TXD pin
becomes bidirectional, its output remains driven by the output of the transmitter but only when
the transmitter is active while its input is directed to the input of the receiver. The USART is con-
sidered as the master of the communication as it generates the clock.

Figure 24-30. Connection of a Smart Card to the USART

24.7.4.2 Protocol T =

32003M-AVR32-09/09

USART
CLK
CLK »
Smart
/O Card
TXD [« >

When operating in ISO7816, either in T = 0 or T = 1 modes, the character format is fixed. The
configuration is 8 data bits, even parity and 1 or 2 stop bits, regardless of the values pro-
grammed in the CHRL, MODE9, PAR and CHMODE fields. MSBF can be used to transmit LSB
or MSB first. Parity Bit (PAR) can be used to transmit in normal or inverse mode. Refer to
"USART Mode Register” on page 429 and "PAR: Parity Type” on page 430.

The USART cannot operate concurrently in both receiver and transmitter modes as the commu-
nication is unidirectional at a time. It has to be configured according to the required mode by
enabling or disabling either the receiver or the transmitter as desired. Enabling both the receiver
and the transmitter at the same time in ISO7816 mode may lead to unpredictable results.

The 1SO7816 specification defines an inverse transmission format. Data bits of the character
must be transmitted on the 1/O line at their negative value. The USART does not support this for-
mat and the user has to perform an exclusive OR on the data before writing it in the Transmit
Holding Register (THR) or after reading it in the Receive Holding Register (RHR).

0

In T = 0 protocol, a character is made up of one start bit, eight data bits, one parity bit and one
guard time, which lasts two bit times. The transmitter shifts out the bits and does not drive the
I/0 line during the guard time.

If no parity error is detected, the 1/O line remains at 1 during the guard time and the transmitter
can continue with the transmission of the next character, as shown in Figure 24-31.

If a parity error is detected by the receiver, it drives the I/O line at 0 during the guard time, as
shown in Figure 24-32. This error bit is also named NACK, for Non Acknowledge. In this case,
the character lasts 1 bit time more, as the guard time length is the same and is added to the
error bit time which lasts 1 bit time.

When the USART is the receiver and it detects an error, it does not load the erroneous character
in the Receive Holding Register (RHR). It appropriately sets the PARE bit in the Status Register
(SR) so that the software can handle the error.

Alm L 418

Y 5

AT32AP7000

Figure 24-31. T = 0 Protocol without Parity Error

Baud Rate
Clock

N N N N N N N N O

Start DO D1 D2 D3 D4 D5 D6 D7 Parity Guard Guard Next
Bit Bit Time1 Time2 Start
Bit

Figure 24-32. T = 0 Protocol with Parity Error

Clock
o T T T T T T T 17 L5 ||

Start DO D1 D2 D3 D4 D5 D6 D7 Parity | Guard Guard | Start DO D1
Bit Bit |[Time 1 Time 2| Bit
Repetition
24.7.4.3 Receive Error Counter

The USART receiver also records the total number of errors. This can be read in the Number of
Error (NER) register. The NB_ERRORS field can record up to 255 errors. Reading NER auto-
matically clears the NB_ERRORS field.

24.7.4.4 Receive NACK Inhibit
The USART can also be configured to inhibit an error. This can be achieved by setting the
INACK bit in the Mode Register (MR). If INACK is at 1, no error signal is driven on the 1/O line
even if a parity bit is detected, but the INACK bit is set in the Status Register (SR). The INACK
bit can be cleared by writing the Control Register (CR) with the RSTNACK bit at 1.

Moreover, if INACK is set, the erroneous received character is stored in the Receive Holding
Register, as if no error occurred. However, the RXRDY bit does not raise.

24.7.4.5 Transmit Character Repetition
When the USART is transmitting a character and gets a NACK, it can automatically repeat the
character before moving on to the next one. Repetition is enabled by writing the
MAX_ITERATION field in the Mode Register (MR) at a value higher than 0. Each character can
be transmitted up to eight times; the first transmission plus seven repetitions.

If MAX_ITERATION does not equal zero, the USART repeats the character as many times as
the value loaded in MAX_ITERATION.

When the USART repetition number reaches MAX_ITERATION, the ITERATION bit is set in the
Channel Status Register (CSR). If the repetition of the character is acknowledged by the
receiver, the repetitions are stopped and the iteration counter is cleared.

The ITERATION bit in CSR can be cleared by writing the Control Register with the RSIT bit at 1.
24.7.4.6 Disable Successive Receive NACK
The receiver can limit the number of successive NACKs sent back to the remote transmitter.

This is programmed by setting the bit DSNACK in the Mode Register (MR). The maximum num-
ber of NACK transmitted is programmed in the MAX_ITERATION field. As soon as

Alm L 419

32003M-AVR32-09/09 I ©

MAX_ITERATION is reached, the character is considered as correct, an acknowledge is sent on
the line and the ITERATION bit in the Channel Status Register is set.

24.7.4.7 Protocol T = 1

When operating in ISO7816 protocol T = 1, the transmission is similar to an asynchronous for-
mat with only one stop bit. The parity is generated when transmitting and checked when
receiving. Parity error detection sets the PARE bit in the Channel Status Register (CSR).

24.7.5 IrDA Mode

The USART features an IrDA mode supplying half-duplex point-to-point wireless communica-
tion. It embeds the modulator and demodulator which allows a glueless connection to the
infrared transceivers, as shown in Figure 24-33. The modulator and demodulator are compliant
with the IrDA specification version 1.1 and support data transfer speeds ranging from 2.4 Kb/s to
115.2 Kb/s.

The USART IrDA mode is enabled by setting the MODE field in the Mode Register (MR) to the
value 0x8. The IrDA Filter Register (IFR) allows configuring the demodulator filter. The USART
transmitter and receiver operate in a normal asynchronous mode and all parameters are acces-
sible. Note that the modulator and the demodulator are activated.

Figure 24-33. Connection to IrDA Transceivers

USART IrDA
Transceivers
Receiver Demodulator RXD RX j /V
TX iz Y4
Transmitter Modulator TXD

The receiver and the transmitter must be enabled or disabled according to the direction of the
transmission to be managed.

24.7.5.1 IrDA Modulation

For baud rates up to and including 115.2 Kbits/sec, the RZI modulation scheme is used. “0” is
represented by a light pulse of 3/16th of a bit time. Some examples of signal pulse duration are
shown in Table 24-9.

Table 24-9. IrDA Pulse Duration

Baud Rate Pulse Duration (3/16)
2.4 Kb/s 78.13 ps

9.6 Kb/s 19.53 ps

19.2 Kb/s 9.77 ps

Alm L 420

32003M-AVR32-09/09 I ©

Table 24-9. IrDA Pulse Duration

Baud Rate Pulse Duration (3/16)
38.4 Kb/s 4.88 ps
57.6 Kb/s 3.26 s
115.2 Kb/s 1.63 ps

Figure 24-34 shows an example of character transmission.

Figure 24-34. IrDA Modulation

Start Data Bits |Stop
Bit >| Bit

et] o [0 [710 o7 Tl o[
wo M M M

-~ —»‘H

Bit Period -2 Bit Period

24.7.5.2 IrDA Baud Rate

Table 24-10 gives some examples of CD values, baud rate error and pulse duration. Note that
the requirement on the maximum acceptable error of +1.87% must be met.

Table 24-10. IrDA Baud Rate Error

Peripheral Clock Baud Rate CcD Baud Rate Error Pulse Time
3 686 400 115 200 2 0.00% 1.63
20 000 000 115 200 11 1.38% 1.63
32 768 000 115 200 18 1.25% 1.63
40 000 000 115 200 22 1.38% 1.63
3 686 400 57 600 4 0.00% 3.26
20 000 000 57 600 22 1.38% 3.26
32 768 000 57 600 36 1.25% 3.26
40 000 000 57 600 43 0.93% 3.26
3 686 400 38 400 6 0.00% 4.88
20 000 000 38 400 33 1.38% 4.88
32 768 000 38 400 53 0.63% 4.88
40 000 000 38 400 65 0.16% 4.88
3 686 400 19 200 12 0.00% 9.77
20 000 000 19 200 65 0.16% 9.77
32 768 000 19 200 107 0.31% 9.77
40 000 000 19 200 130 0.16% 9.77

N AImEl 421

32003M-AVR32-09/09 I ©

Table 24-10. IrDA Baud Rate Error (Continued)

Peripheral Clock Baud Rate CD Baud Rate Error Pulse Time
3 686 400 9 600 24 0.00% 19.53
20 000 000 9 600 130 0.16% 19.53
32 768 000 9 600 213 0.16% 19.53
40 000 000 9 600 260 0.16% 19.53
3 686 400 2400 96 0.00% 78.13
20 000 000 2400 521 0.03% 78.13
32 768 000 2400 853 0.04% 78.13

24.7.5.3 IrDA Demodulator

The demodulator is based on the IrDA Receive filter comprised of an 8-bit down counter which is
loaded with the value programmed in IFR. When a falling edge is detected on the RXD pin, the
Filter Counter starts counting down at the CLK_USART speed. If a rising edge is detected on the
RXD pin, the counter stops and is reloaded with IFR. If no rising edge is detected when the
counter reaches 0, the input of the receiver is driven low during one bit time.

Figure 24-35 illustrates the operations of the IrDA demodulator.

Figure 24-35. IrDA Demodulator Operations

CLK_USART

RXD _|

1

Counter
Value

Receiver

PAEEEE A e

6 5 4 3 2 1 0 Accepted

Pulse
Rejected

Input

32003M-AVR32-09/09

| Driven Low During 16 Baud Rate Clock Cycles

As the IrDA mode uses the same logic as the ISO7816, note that the FI_DI_RATIO field in FIDI
must be set to a value higher than 0 in order to assure I[rDA communications operate correctly.

Alm L 422

Y 5

24.7.6 RS485 Mode

The USART features the RS485 mode to enable line driver control. While operating in RS485
mode, the USART behaves as though in asynchronous or synchronous mode and configuration
of all the parameters is possible. The difference is that the RTS pin is driven high when the
transmitter is operating. The behavior of the RTS pin is controlled by the TXEMPTY bit. A typical
connection of the USART to a RS485 bus is shown in Figure 24-36.

Figure 24-36. Typical Connection to a RS485 Bus

USART

RXD %
Differential

TXD Bus

RTS

The USART is set in RS485 mode by programming the MODE field in the Mode Register (MR)
to the value Ox1.

The RTS pin is at a level inverse to the TXEMPTY bit. Significantly, the RTS pin remains high
when a timeguard is programmed so that the line can remain driven after the last character com-
pletion. Figure 24-37 gives an example of the RTS waveform during a character transmission
when the timeguard is enabled.

Figure 24-37. Example of RTS Drive with Timeguard

32003M-AVR32-09/09

_ TG=4

g SUUUUUUUUUUU UYL
e | [TTTTTTTT]

A
\

Start Parity Stop
by DO D1 D2 D3 D4 D5 D6 D7 Bi'ty i
Write I
US_THR
TXRDY | I
TXEMPTY |
RTS |

Alm L 423

Y 5

24.7.7 Test Modes

The USART can be programmed to operate in three different test modes. The internal loopback
capability allows on-board diagnostics. In the loopback mode the USART interface pins are dis-
connected or not and reconfigured for loopback internally or externally.

24.7.7.1 Normal Mode

Normal mode connects the RXD pin on the receiver input and the transmitter output on the TXD
pin.

Figure 24-38. Normal Mode Configuration

XD
Receiver

TXD

Transmitter

24.7.7.2 Automatic Echo Mode

Automatic echo mode allows bit-by-bit retransmission. When a bit is received on the RXD pin, it
is sent to the TXD pin, as shown in Figure 24-39. Programming the transmitter has no effect on
the TXD pin. The RXD pin is still connected to the receiver input, thus the receiver remains
active.

Figure 24-39. Automatic Echo Mode Configuration

XD
Receiver

TXD

Transmitter — 4’|:|

24.7.7.3 Local Loopback Mode

Local loopback mode connects the output of the transmitter directly to the input of the receiver,
as shown in Figure 24-40. The TXD and RXD pins are not used. The RXD pin has no effect on
the receiver and the TXD pin is continuously driven high, as in idle state.

Figure 24-40. Local Loopback Mode Configuration

XD
Receiver

TXD

Transmitter 1 —D

Alm L 424

32003M-AVR32-09/09 I ©

AT32AP7000

24.7.7.4 Remote Loopback Mode

Remote loopback mode directly connects the RXD pin to the TXD pin, as shown in Figure 24-41.
The transmitter and the receiver are disabled and have no effect. This mode allows bit-by-bit
retransmission.

Figure 24-41. Remote Loopback Mode Configuration

XD
Receiver —1

TXD

Transmitter ———— —D

Alm L 425

32003M-AVR32-09/09 I ©

24.8 USART User Interface

Table 24-11. USART Memory Map

Offset Register Name Access Reset State
0x0000 Control Register CR Write-only -
0x0004 Mode Register MR Read/Write -
0x0008 Interrupt Enable Register IER Write-only -
0x000C Interrupt Disable Register IDR Write-only -
0x0010 Interrupt Mask Register IMR Read-only 0x0
0x0014 Channel Status Register CSR Read-only -
0x0018 Receiver Holding Register RHR Read-only 0x0
0x001C Transmitter Holding Register THR Write-only -
0x0020 Baud Rate Generator Register BRGR Read/Write 0x0
0x0024 Receiver Time-out Register RTOR Read/Write 0x0
0x0028 Transmitter Timeguard Register TTGR Read/Write 0x0
0x2C - 0x3C Reserved - - -
0x0040 F1 DI Ratio Register FIDI Read/Write 0x174
0x0044 Number of Errors Register NER Read-only -
0x0048 Reserved - - -
0x004C IrDA Filter Register IFR Read/Write 0x0
0x0050 Manchester Encoder Decoder Register MAN Read/Write 0x30011004
0x5C - OxF8 Reserved - - -
0xFC Version Register US_VERSION Read-only ox—"
0x100 - 0x128 Reserved for PDC Registers - - -

Note: 1. Values in the Version Register vary with the version of the IP block implementation.

32003M-AVR32-09/09

ATMEL

Y 5

426

24.8.1 USART Control Register

Name: CR

Access Type: Write-only

Offset: 0x00

Reset Value: -
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

| - | - | - | - | RTSDIS | RTSEN | - | - |
15 14 13 12 11 10 9 8

| RETTO | RSTNACK | RSTIT | SENDA | STTTO | STPBRK | STTBRK | RSTSTA |
7 6 5 4 3 2 1 0

| TXDIS | TXEN | RXDIS | RXEN | RSTTX | RSTRX | - | - |

e RSTRX: Reset Receiver
0: No effect.

1: Resets the receiver.

¢ RSTTX: Reset Transmitter
0: No effect.

1: Resets the transmitter.

e RXEN: Receiver Enable
0: No effect.

1: Enables the receiver, if RXDIS is 0.

e RXDIS: Receiver Disable
0: No effect.

1: Disables the receiver.

e TXEN: Transmitter Enable
0: No effect.

1: Enables the transmitter if TXDIS is 0.

e TXDIS: Transmitter Disable
0: No effect.

1: Disables the transmitter.

e RSTSTA: Reset Status Bits
0: No effect.

1: Resets the status bits PARE, FRAME, OVRE, MANERR and RXBRK in CSR.

e STTBRK: Start Break
0: No effect.

Alm L 427

32003M-AVR32-09/09 I ©

1: Starts transmission of a break after the characters present in THR and the Transmit Shift Register have been transmit-
ted. No effect if a break is already being transmitted.

e STPBRK: Stop Break
0: No effect.

1: Stops transmission of the break after a minimum of one character length and transmits a high level during 12-bit periods.
No effect if no break is being transmitted.

e STTTO: Start Time-out
0: No effect

1: Starts waiting for a character before clocking the time-out counter.

e SENDA: Send Address
0: No effect.

1: In Multidrop Mode only, the next character written to the THR is sent with the address bit set.

¢ RSTIT: Reset Iterations
0: No effect.

1: Resets ITERATION in CSR. No effect if the ISO7816 is not enabled.

e RSTNACK: Reset Non Acknowledge
0: No effect

1: Resets NACK in CSR.

e RETTO: Rearm Time-out
0: No effect

1: Restart Time-out

¢ RTSEN: Request to Send Enable
0: No effect.

1: Drives the pin RTS to 0.

¢ RTSDIS: Request to Send Disable
0: No effect.

1: Drives the pin RTS to 1.

Alm L 428

32003M-AVR32-09/09 I ©

24.8.2 USART Mode Register
Name: MR
Access Type: Read/Write
31 30 29 28 27 26 25 24
| ONEBIT | MODSYNC | MAN | FILTER | - | MAX_ITERATION |
23 22 21 20 19 18 17 16
| - | VAR_SYNC | DSNACK | INACK | OVER | CLKO MODE9 | MSBF |
15 14 13 12 11 10 9 8
| CHMODE | NBSTOP | PAR | SYNC |
7 6 5 4 3 2 1 0
| CHRL | USCLKS | MODE |
* MODE
MODE Mode of the USART
0 0 0 0 Normal
0 0 0 1 RS485
0 0 1 0 Hardware Handshaking
0 0 1 1 Reserved
0 1 0 0 1IS07816 Protocol: T=0
0 1 0 1 Reserved
0 1 1 0 IS07816 Protocol: T =1
0 1 1 1 Reserved
1 0 0 0 IrDA
1 1 X X Reserved
¢ USCLKS: Clock Selection
USCLKS Selected Clock
0 0 CLK_USART
0 1 CLK_USART /DIV
1 0 Reserved
1 1 CLK
e CHRL: Character Length.
CHRL Character Length
0 0 5 bits
ATMEL

32003M-AVR32-09/09

Y 5

0 1 6 bits
1 0 7 bits
1 1 8 bits

e SYNC: Synchronous

Mode Select

0: USART operates in Asynchronous Mode.

1: USART operates in Synchronous Mode.

* PAR: Parity Type

PAR Parity Type
0 0 0 Even parity
0 0 1 Odd parity
0 1 0 Parity forced to 0 (Space)
0 1 1 Parity forced to 1 (Mark)
1 0 X No parity
1 1 X Multidrop mode

e NBSTOP: Number of Stop Bits

NBSTOP Asynchronous (SYNC = 0) Synchronous (SYNC =1)
0 0 1 stop bit 1 stop bit
0 1 1.5 stop bits Reserved
1 0 2 stop bits 2 stop bits
1 1 Reserved Reserved

e CHMODE: Channel Mode

CHMODE Mode Description
0 0 Normal Mode
0 1 Automatic Echo. Receiver input is connected to the TXD pin.
1 0 Local Loopback. Transmitter output is connected to the Receiver Input..
1 1 Remote Loopback. RXD pin is internally connected to the TXD pin.

e MSBF: Bit Order

0: Least Significant Bit is sent/received first.

1: Most Significant Bit is sent/received first.

e MODE?9: 9-bit Character Length
0: CHRL defines character length.

1: 9-bit character length.

¢ CLKO: Clock Output Select
0: The USART does not drive the CLK pin.

32003M-AVR32-09/09

ATMEL

Y 5

430

1: The USART drives the CLK pin if USCLKS does not select the external clock CLK.

e OVER: Oversampling Mode
0: 16x Oversampling.

1: 8x Oversampling.

¢ INACK: Inhibit Non Acknowledge
0: The NACK is generated.

1: The NACK is not generated.

* DSNACK: Disable Successive NACK
0: NACK is sent on the ISO line as soon as a parity error occurs in the received character (unless INACK is set).

1: Successive parity errors are counted up to the value specified in the MAX_ITERATION field. These parity errors gener-
ate a NACK on the ISO line. As soon as this value is reached, no additional NACK is sent on the ISO line. The flag
ITERATION is asserted.

e VAR_SYNC: Variable synchronization of command/data sync Start Frame Delimiter
0: User defined configuration of command or data sync field depending on SYNC value.

1: The sync field is updated when a character is written into THR register.

e MAX_ITERATION
Defines the maximum number of iterations in mode 1ISO7816, protocol T= 0.

¢ FILTER: Infrared Receive Line Filter
0: The USART does not filter the receive line.

1: The USART filters the receive line using a three-sample filter (1/16-bit clock) (2 over 3 majority).

MAN: Manchester Encoder/Decoder Enable
0: Manchester Encoder/Decoder are disabled.

1: Manchester Encoder/Decoder are enabled.

MODSYNC: Manchester Synchronization mode
0:The Manchester Start bit is a 0 to 1 transition

1: The Manchester Start bit is a 1 to 0 transition.

e ONEBIT: Start Frame Delimiter selector
0: Start Frame delimiter is COMMAND or DATA SYNC.

1: Start Frame delimiter is One Bit.

Alm L 431

32003M-AVR32-09/09 I ©

24.8.3 USART Interrupt Enable Register

Name: IER

Access Type: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - - |
23 22 21 20 19 18 17 16

| - | - | - | MANE | CTSIC | - | - | - |
15 14 13 12 11 10 9 8

| - | - | NACK | RXBUFF | TXBUFE | ITERATION | TXEMPTY | TIMEOUT |
7 6 5 4 3 2 1 0

| PARE | FRAME | OVRE | ENDTX | ENDRX | RXBRK | TXRDY | RXRDY |

¢ RXRDY: RXRDY Interrupt Enable

e TXRDY: TXRDY Interrupt Enable

¢ RXBRK: Receiver Break Interrupt Enable

¢ ENDRX: End of Receive Transfer Interrupt Enable
e ENDTX: End of Transmit Interrupt Enable

e OVRE: Overrun Error Interrupt Enable

e FRAME: Framing Error Interrupt Enable

e PARE: Parity Error Interrupt Enable

e TIMEOUT: Time-out Interrupt Enable

e TXEMPTY: TXEMPTY Interrupt Enable

¢ ITERATION: Iteration Interrupt Enable

e TXBUFE: Buffer Empty Interrupt Enable

¢ RXBUFF: Buffer Full Interrupt Enable

* NACK: Non Acknowledge Interrupt Enable

¢ CTSIC: Clear to Send Input Change Interrupt Enable

¢ MANE: Manchester Error Interrupt Enable
0: No effect.

1: Enables the corresponding interrupt.

Alm L 432

32003M-AVR32-09/09 I ©

24.8.4 USART Interrupt Disable Register

Name: IDR

Access Type: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - - |
23 22 21 20 19 18 17 16

| - | - | - | MANE | CTSIC | - | - | - |
15 14 13 12 11 10 9 8

| - | - | NACK | RXBUFF | TXBUFE | ITERATION | TXEMPTY | TIMEOUT |
7 6 5 4 3 2 1 0

| PARE | FRAME | OVRE | ENDTX | ENDRX | RXBRK | TXRDY | RXRDY |

¢ RXRDY: RXRDY Interrupt Disable

e TXRDY: TXRDY Interrupt Disable

¢ RXBRK: Receiver Break Interrupt Disable

¢ ENDRX: End of Receive Transfer Interrupt Disable
e ENDTX: End of Transmit Interrupt Disable

e OVRE: Overrun Error Interrupt Disable

e FRAME: Framing Error Interrupt Disable

e PARE: Parity Error Interrupt Disable

¢ TIMEOUT: Time-out Interrupt Disable

e TXEMPTY: TXEMPTY Interrupt Disable

¢ ITERATION: Iteration Interrupt Disable

e TXBUFE: Buffer Empty Interrupt Disable

¢ RXBUFF: Buffer Full Interrupt Disable

* NACK: Non Acknowledge Interrupt Disable

e CTSIC: Clear to Send Input Change Interrupt Disable

¢ MANE: Manchester Error Interrupt Disable
0: No effect.

1: Disables the corresponding interrupt.

Alm L 433

32003M-AVR32-09/09 I ©

24.8.5 USART Interrupt Mask Register

Name: IMR

Access Type: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - - |
23 22 21 20 19 18 17 16

| - | - | - | MANE | CTSIC | - | - | - |
15 14 13 12 11 10 9 8

| - | - | NACK | RXBUFF | TXBUFE | ITERATION | TXEMPTY | TIMEOUT |
7 6 5 4 3 2 1 0

| PARE | FRAME | OVRE | ENDTX | ENDRX | RXBRK | TXRDY | RXRDY |

¢ RXRDY: RXRDY Interrupt Mask

e TXRDY: TXRDY Interrupt Mask

¢ RXBRK: Receiver Break Interrupt Mask

¢ ENDRX: End of Receive Transfer Interrupt Mask
e ENDTX: End of Transmit Interrupt Mask

e OVRE: Overrun Error Interrupt Mask

e FRAME: Framing Error Interrupt Mask

¢ PARE: Parity Error Interrupt Mask

e TIMEOUT: Time-out Interrupt Mask

e TXEMPTY: TXEMPTY Interrupt Mask

¢ ITERATION: Iteration Interrupt Mask

e TXBUFE: Buffer Empty Interrupt Mask

¢ RXBUFF: Buffer Full Interrupt Mask

* NACK: Non Acknowledge Interrupt Mask

e CTSIC: Clear to Send Input Change Interrupt Mask

e MANE: Manchester Error Interrupt Mask
0: The corresponding interrupt is disabled.

1: The corresponding interrupt is enabled.

Alm L 434

32003M-AVR32-09/09 I ©

24.8.6 USART Channel Status Register

Name: CSR

Access Type: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - | WANERR |
23 22 21 20 19 18 17 16

[©CTS | - - - | c1sic | - - -
15 14 13 12 11 10 9 8

| - | - | NACK | RXBUFF | TXBUFE | ITERATION | TXEMPTY | TIMEOUT |
7 6 5 4 3 2 1 0

| PARE | FRAME | OVRE | ENDTX | ENDRX | RXBRK | TXRDY | RXRDY |

RXRDY: Receiver Ready

0: No complete character has been received since the last read of RHR or the receiver is disabled. If characters were being

received when the receiver was disabled, RXRDY changes to 1 when the receiver is enabled.

1: At least one complete character has been received and RHR has not yet been read.

TXRDY: Transmitter Ready

0: A character is in the THR waiting to be transferred to the Transmit Shift Register, or an STTBRK command has been
requested, or the transmitter is disabled. As soon as the transmitter is enabled, TXRDY becomes 1.

1:

0:
: Break Received or End of Break detected since the last RSTSTA.

32003M-AVR32-09/09

There is no character in the THR.

RXBRK: Break Received/End of Break
No Break received or End of Break detected since the last RSTSTA.

ENDRX: End of Receiver Transfer

: The End of Transfer signal from the Receive PDC channel is inactive.

: The End of Transfer signal from the Receive PDC channel is active.

ENDTX: End of Transmitter Transfer

: The End of Transfer signal from the Transmit PDC channel is inactive.

: The End of Transfer signal from the Transmit PDC channel is active.

OVRE: Overrun Error

: No overrun error has occurred since the last RSTSTA.

: At least one overrun error has occurred since the last RSTSTA.

FRAME: Framing Error

: No stop bit has been detected low since the last RSTSTA.

: At least one stop bit has been detected low since the last RSTSTA.

PARE: Parity Error

: No parity error has been detected since the last RSTSTA.

ATMEL

Y 5

435

1: At least one parity error has been detected since the last RSTSTA.

¢ TIMEOUT: Receiver Time-out
: There has not been a time-out since the last Start Time-out command or the Time-out Register is 0.

- O

: There has been a time-out since the last Start Time-out command.

TXEMPTY: Transmitter Empty
0: There are characters in either THR or the Transmit Shift Register, or the transmitter is disabled.

TXEMPTY == 1 means that the transmit shift register is empty and that there is no data in THR.

¢ ITERATION: Max number of Repetitions Reached
0: Maximum number of repetitions has not been reached since the last RSIT.

1: Maximum number of repetitions has been reached since the last RSIT.

¢ TXBUFE: Transmission Buffer Empty
0: The signal Buffer Empty from the Transmit PDC channel is inactive.

1: The signal Buffer Empty from the Transmit PDC channel is active.

¢ RXBUFF: Reception Buffer Full
0: The signal Buffer Full from the Receive PDC channel is inactive.

1: The signal Buffer Full from the Receive PDC channel is active.

¢ NACK: Non Acknowledge
0: No Non Acknowledge has not been detected since the last RSTNACK.

1: At least one Non Acknowledge has been detected since the last RSTNACK.

¢ CTSIC: Clear to Send Input Change Flag
0: No input change has been detected on the CTS pin since the last read of CSR.

1: At least one input change has been detected on the CTS pin since the last read of CSR.

e CTS: Image of CTS Input
0: CTSis at 0.

1:CTSis at 1.

¢ MANERR: Manchester Error
0: No Manchester error has been detected since the last RSTSTA.

1: At least one Manchester error has been detected since the last RSTSTA.

Alm L 436

32003M-AVR32-09/09 I ©

24.8.7 USART Receive Holding Register

Name: RHR

Access Type: Read-only
31 30 29 28 27 26 25 24

- T - T - T - T - - — T -]
23 22 21 20 19 18 17 16

- T - T - T - T - - SR
15 14 13 12 11 10 9 8

[RXSYNH] - [- [- [- - - [RXCHR]
7 6 5 4 3 2 1 0

RXCHR

e RXCHR: Received Character
Last character received if RXRDY is set.

¢ RXSYNH: Received Sync
0: Last Character received is a Data.

1: Last Character received is a Command.

32003M-AVR32-09/09

ATMEL

437

24.8.8 USART Transmit Holding Register

Name: THR

Access Type: Write-only
31 30 29 28 27 26 25 24

[T - S R - — T -]
23 22 21 20 19 18 17 16

- T - -~ [- T - - SR
15 14 13 12 11 10 9 8

| TXSYNH | - - | - | - - - | TXCHR |
7 6 5 4 3 2 1 0

TXCHR |

e TXCHR: Character to be Transmitted

Next character to be transmitted after the current character if TXRDY is not set.

¢ TXSYNH: Sync Field to be transmitted

0: The next character sent is encoded as a data. Start Frame Delimiter is DATA SYNC.

1: The next character sent is encoded as a command. Start Frame Delimiter is COMMAND SYNC.

32003M-AVR32-09/09

ATMEL

Y 5

438

24.8.9 USART Baud Rate Generator Register

Name: BRGR
Access Type: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
| - | - I - | - | - | FP |
15 14 13 12 11 10 9 8
| CcD |
7 6 5 4 3 2 1 0
| cb |
e CD: Clock Divider
MODE # I1ISO7816
CD SYNC =0 SYNC =1 MODE =1S07816
OVER =0 OVER =1
0 Baud Rate Clock Disabled
1 to 65535 Baud Rate = Baud Rate = Baud Rate = Baud Rate = Selected
Selected Clock/16/CD | Selected Clock/8/CD Selected Clock /CD Clock/CD/FI_DI_RATIO

¢ FP: Fractional Part
0: Fractional divider is disabled.

1 - 7: Baudrate resolution, defined by FP x 1/8.

Alm L 439

32003M-AVR32-09/09 I ©

24.8.10 USART Receiver Time-out Register

Name: RTOR

Access Type: Read/Write
31 30 29 28 27 26 25 24

- T - T - T -1 -1 - -]
23 22 21 20 19 18 17 16

-~ T - 1 - T - T = T - - —]
15 14 13 12 11 10 9 8

I 10 |
7 6 5 4 3 2 1 0

I 0 |

¢ TO: Time-out Value
0: The Receiver Time-out is disabled.

1 - 65535: The Receiver Time-out is enabled and the Time-out delay is TO x Bit Period.

ATMEL

32003M-AVR32-09/09

440

24.8.11 USART Transmitter Timeguard Register

Name: TTGR

Access Type: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| TG |

e TG: Timeguard Value
0: The Transmitter Timeguard is disabled.

1 - 255: The Transmitter timeguard is enabled and the timeguard delay is TG x Bit Period.

A ||'|E|'® 441

32003M-AVR32-09/09

24.8.12 USART FI DI RATIO Register

Name: FIDI

Access Type: Read/Write

Reset Value : 0x174
31 30 29 28 27 26 25 24

I — T - T - - — 1 -]
23 22 21 20 19 18 17 16

- T - SR R - — T -]
15 14 13 12 11 10 9 8

| - [- - [- [- FI_DI_RATIO |
7 6 5 4 3 2 1 0

| FI_DI_RATIO |

* FI_DI_RATIO: FI Over DI Ratio Value

0: If ISO7816 mode is selected, the Baud Rate Generator generates no signal.

1-2047: If ISO7816 mode is selected, the Baud Rate is the clock provided on CLK divided by FI_DI_RATIO.

32003M-AVR32-09/09

ATMEL

442

24.8.13 USART Number of Errors Register

Name: NER
Access Type: Read-only
31 30 29 28 27 26 25 24
- T - T - T - T - - - —
23 22 21 20 19 18 17 16
- T - T - T - T - - - —]
15 14 13 12 11 10 9 8
- [- T - T - T - : - —]
7 6 5 4 3 2 1 0
NB_ERRORS |

e NB_ERRORS: Number of Errors

Total number of errors that occurred during an ISO7816 transfer. This register automatically clears when read.

32003M-AVR32-09/09

ATMEL

443

24.8.14 USART Manchester Configuration Register

Name: MAN
Access Type: Read/Write
31 30 29 28 27 26 25 24
| - [DRIFT] - [RX_MPOL | - - RX_PP |
23 22 21 20 19 18 17 16
I - I - I - I - I RX_PL |
15 14 13 12 11 10 9 8
| - | - | - | TX_MPOL | - | - | TX_PP |
7 6 5 4 3 2 1 0
I - I - I - I - I TX_PL |
e TX_PL: Transmitter Preamble Length
0: The Transmitter Preamble pattern generation is disabled
1 - 15: The Preamble Length is TX_PL x Bit Period
e TX_PP: Transmitter Preamble Pattern
TX_PP Preamble Pattern default polarity assumed (TX_MPOL field not set)
0 0 ALL_ONE
0 1 ALL_ZERO
1 0 ZERO_ONE
1 1 ONE_ZERO

e TX_MPOL: Transmitter Manchester Polarity
0: Logic Zero is coded as a zero-to-one transition, Logic One is coded as a one-to-zero transition.

1: Logic Zero is coded as a one-to-zero transition, Logic One is coded as a zero-to-one transition.

e RX_PL: Receiver Preamble Length
0: The receiver preamble pattern detection is disabled

1 - 15: The detected preamble length is RX_PL x Bit Period

e RX_PP: Receiver Preamble Pattern detected

RX_PP Preamble Pattern default polarity assumed (RX_MPOL field not set)
0 0 ALL_ONE
0 1 ALL_ZERO
1 0 ZERO_ONE
1 1 ONE_ZERO

¢ RX_MPOL: Receiver Manchester Polarity
0: Logic Zero is coded as a zero-to-one transition, Logic One is coded as a one-to-zero transition.

Alm L 444

32003M-AVR32-09/09 I ©

1: Logic Zero is coded as a one-to-zero transition, Logic One is coded as a zero-to-one transition.

* DRIFT: Drift compensation
0: The USART can not recover from an important clock drift

1: The USART can recover from clock drift. The 16X clock mode must be enabled.

Alm L 445

32003M-AVR32-09/09 I ©

24.8.15 USART IrDA FILTER Register

Name: IFR

Access Type: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| IRDA_FILTER |

¢ IRDA_FILTER: IrDA Filter

Sets the filter of the IrDA demodulator.

24.9 USART Version Register

Name: US_VERSION

Access Type: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - - - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I MFN |
15 14 13 12 11 10 9 8

| - | - | - | - | VERSION |
7 6 5 4 3 2 1 0

| VERSION |

e VERSION

Reserved. Value subject to change. No functionality associated. This is the Atmel internal version of the macrocell.

¢ MFN
Reserved. Value subject to change. No functionality associated.

A ||'|E|,® 446

32003M-AVR32-09/09

25. AC97 Controller (AC97C)

Rev: 2.1.0.0

25.1 Features

Compliant with AC97 2.2 Component Specification
¢ 2 independent communication channels
— Codec Channel, dedicated to the AC97 Analog Front End Control and Status Monitoring
— 2 channels associated with DMA Controller interface for Isochronous Audio Streaming
Transfer
Variable Sampling Rate AC97 Codec Interface Support
* One Primary Codec Support
¢ Independent input and Output Slot to Channel Assignment, Several Slots Can Be Assigned to the
Same Channel.
Channels Support Mono/Stereo/Multichannel Samples of 10, 16, 18 and 20 Bits.

25.2 Description

The AC97 Controller is the hardware implementation of the AC97 digital controller (DC’97) com-
pliant with AC97 Component Specification 2.2. The AC97 Controller communicates with an
audio codec (AC97) or a modem codec (MC’97) via the AC-link digital serial interface. All digital
audio, modem and handset data streams, as well as control (command/status) informations are
transferred in accordance to the AC-link protocol.

The AC97 Controller features a DMA Controller interface for audio streaming transfers. It also
supports variable sampling rate and four Pulse Code Modulation (PCM) sample resolutions of
10, 16, 18 and 20 bits.

AIMEL 447

32003M-AVR32-09/09 I ©

25.3 Block D

Figure 25-1.

AC97C Interrupt
—

MCK

Peripheral Bus v

32003M-AVR32-09/09

iagram

Functional Block Diagram

AC97 Tag Controller

AC97 CODEC Channel

| AC97C_COTHR l

| ACQ7C?CORHRi

AC97 Channel A

| AC97C_CATHR i

| AC97C_CARHR I

AC97 Channel B

| AC97C_CBTHR i

| ACQ7C_CBRHF{i

User Interface

<

ATMEL

Y 5

Bit Clock Domain

1 1 1
1 1 1
: Slot Number | .
1 1
. T AC97 Slot Controller [T >
1 1
1 1 1
1 1 1
. - .
! : Slot Number .
: 1 16/20 bits 1
1 ! 1
1 Slot #0 ! 1
T 1| Transmit Shift Register !
1 ! M 1
L 1
: - .
i L Receive Shift Register !
. Sot#,1 ! U '
. ' .
: " X '
f 1 F——+—>
1 1
! Sot#12 ' | Transmit Shift Register :
: T :
: +— Receive Shift Register 1
. Slot #2 ' '
1 1 1
! 1 1
. - —
1 1
1 ' D 1
! 1| Transmit Shift Register 1
1 1
Slot#3.12 4 |- T T T T E .
T Receive Shift Register :
1
1 1
1 M PR
1
1
1
1
Transmit Shift Register U
Slot#3..12 = |-
Receive Shift Register X

448

25.4 Pin Name List

Table 25-1. 1/O Lines Description

Pin Name Pin Description Type
SCLK 12.288-MHz bit-rate clock (Referred as BITCLK in AC-link spec) Input
SDI Receiver Data (Referred as SDATA_IN in AC-link spec) Input
SYNC 48-KHz frame indicator and synchronizer Output
SDO Transmitter Data (Referred as SDATA_OUT in AC-link spec) Output

The AC97 reset signal provided to the primary codec can be generated by a PIO.

25.5 Application Block Diagram

Figure 25-2. Application Block diagram

AC 97 Controller AC-link \ AC'97 Primary Codec
1
1 AC97_RESET !
P10x >

1 1
1 AC97_SYNC !

SYNC .
1
: AC97_BITCLK !

SCLK [< ,

SDO AC97_SDATA_OUT

! AC97_SDATA_IN
SDI [<—

AIMEL 449

32003M-AVR32-09/09 I ©

25.6 Product Dependencies

25.6.1 I/0 Lines

The pins used for interfacing the compliant external devices may be multiplexed with PIO lines.

Before using the AC97 Controller receiver, the PIO controller must be configured in order for the
AC97C receiver I/O lines to be in AC97 Controller peripheral mode.

Before using the AC97 Controller transmitter, the PIO controller must be configured in order for
the AC97C transmitter 1/O lines to be in AC97 Controller peripheral mode.

25.6.2 Power Management

25.6.3 Interrupt

32003M-AVR32-09/09

The AC97 clock is generated by the power manager. Before using the AC97, the programmer
must ensure that the AC’97 clock is enabled in the power manager.

In the AC97 description, Master Clock (MCK) is the clock of the peripheral bus to which the
AC97 is connected. It is important that that the MCK clock frequency is higher than the SCLK
(Bit Clock) clock frequancy as signals that cross the two clock domains are re-synchronized.

The AC97 interface has an interrupt line connected to the interrupt controller. In order to handle
interrupts, the interrupt controller must be programmed before configuring the AC97.

All AC97 Controller interrupts can be enabled/disabled by writing to the AC97 Controller Inter-
rupt Enable/Disable Registers. Each pending and unmasked AC97 Controller interrupt will
assert the interrupt line. The AC97 Controller interrupt service routine can get the interrupt
source in two steps:

*Reading and ANDing AC97 Controller Interrupt Mask Register (IMR) and AC97 Controller
Status Register (SR).

*Reading AC97 Controller Channel x Status Register (CxSR).)

Alm L 450

Y 5

25.7 Functional Description

25.7.1 Protocol overview
AC-link protocol is a bidirectional, fixed clock rate, serial digital stream. AC-link handles multiple
input and output Pulse Code Modulation PCM audio streams, as well as control register
accesses employing a Time Division Multiplexed (TDM) scheme that divides each audio frame
in 12 outgoing and 12 incoming 20-bit wide data slots.

Figure 25-3. Bidirectional AC-link Frame with Slot Assignment

Slot # 0 1

AC97FS

AC97TX
(Controller Output)

PCM ><LINE 2>< HSET>< 10
LFE DAC DAC CTRL

STATUSN/STATU
AC97RX @ ADDR DATA

(Codec output)

TINE T\/PCM TINE 2\~ FISET 19
DAC MIC XRSVEDX RSVED><RSVED>< ADC ADC TATU

Table 25-2. AC-link Output Slots Transmitted from the AC97C Controller
Slot # Pin Description
0 TAG
1 Command Address Port
2 Command Data Port
3,4 PCM playback Left/Right Channel
5 Modem Line 1 Output Channel
6,7,8 PCM Center/Left Surround/Right Surround
9 PCM LFE DAC
10 Modem Line 2 Output Channel
11 Modem Handset Output Channel
12 Modem GPIO Control Channel
Table 25-3. AC-link Input Slots Transmitted from the AC97C Controller
Slot # Pin Description
0 TAG
1 Status Address Port
2 Status Data Port
3,4 PCM playback Left/Right Channel
5 Modem Line 1 ADC
6 Dedicated Microphone ADC
7,8,9 Vendor Reserved
10 Modem Line 2 ADC
11 Modem Handset Input ADC
12 Modem IO Status

AIMEL 451

32003M-AVR32-09/09 I ©

25.7.2 Slot Description

25.7.2.1 Tag Slot
The tag slot, or slot 0, is a 16-bit wide slot that always goes at the beginning of an outgoing or
incoming frame. Within tag slot, the first bit is a global bit that flags the entire frame validity. The
next 12 bit positions sampled by the AC97 Controller indicate which of the corresponding 12
time slots contain valid data. The slot’s last two bits (combined) called Codec ID, are used to dis-
tinguish primary and secondary codec.

The 16-bit wide tag slot of the output frame is automatically generated by the AC97 Controller
according to the transmit request of each channel and to the SLOTREQ from the previous input
frame, sent by the AC97 Codec, in Variable Sample Rate mode.

25.7.2.2 Codec Siot 1
The command/status slot is a 20-bit wide slot used to control features, and monitors status for
AC97 Codec functions.

The control interface architecture supports up to sixty-four 16-bit wide read/write registers. Only
the even registers are currently defined and addressed.

Slot 1’s bitmap is the following:

*Bit 19 is for read/write command, 1= read, 0 = write.
*Bits [18:12] are for control register index.
*Bits [11:0] are reserved.

25.7.2.3 Codec Slot 2
Slot 2 is a 20-bit wide slot used to carry 16-bit wide AC97 Codec control register data. If the cur-
rent command port operation is a read, the entire slot time is stuffed with zeros. Its bitmap is the
following:
*Bits [19:4] are the control register data
*Bits [3:0] are reserved and stuffed with zeros.

25.7.24 Data Slots [3:12]
Slots [3:12] are 20-bit wide data slots, they usually carry audio PCM or/and modem 1/O data.

Alm L 452

32003M-AVR32-09/09 I ©

25.7.3 AC97 Controller Channel Organization

The AC97 Controller features a Codec channel and 2 logical channels; Channel A and Channel
B.

The Codec channel controls AC97 Codec registers, it enables write and read configuration val-
ues in order to bring the AC97 Codec to an operating state. The Codec channel always runs slot
1 and slot 2 exclusively, in both input and output directions.

Channel A and Channel B transfer data to/from AC97 codec. All audio samples and modem
data must transit by these two channels.

Each slot of the input or the output frame that belongs to this range [3 to 12] can be operated by
either Channel A or Channel B. The slot to channel assignment is configured by two registers:
*AC97 Controller Input Channel Assignment Register (ICA)
*AC97 Controller Output Channel Assignment Register (OCA)

The AC97 Controller Input Channel Assignment Register (ICA) configures the input slot to chan-
nel assignment. The AC97 Controller Output Channel Assignment Register (OCA) configures
the output slot to channel assignment.

A slot can be left unassigned to a channel by the AC97 Controller. Slots 0, 1,and 2 cannot be
assigned to Channel A or to Channel B through the OCA and ICA Registers.

The width of sample data, that transit via Channel A and Channel B varies and can take one of
these values; 10, 16, 18 or 20 bits.

Figure 25-4. Logical Channel Assignment

Slot #

AC97FS

AC97TX
(Controller Output)

AC97RX
(Codec output)

32003M-AVR32-09/09

0

J_I

AC97C_{

AC97C_|

1 2 3 4 5 6 7 8 9 10 11 12
CMD CMD PCM PCM LINE 1 PCM PCM PCM PCM LINE 2 HSET 10
ADDR DATA L Fron R Fron DAC Center/\ L SUR R SUR LFE DAC DAC CTRL
Codec Channel Channel A

OCA = 0x0000_0209

LINE 2% HSET 10
RSVEL>< RSVEI:><RSVED X DG X Jr X STAT ;>

Codec Channel Channel A

ICA = 0x0000_0009

A ||'|E|,® 453

25.7.3.1 AC97 Controller Setup
The following operations must be performed in order to bring the AC97 Controller into an operat-
ing state:

1. Enable the AC97 Controller clock in the power manager.
2. Turn on AC97 function by enabling the ENA bit in AC97 Controller Mode Register (MR).

3. Configure the input channel assignment by controlling the AC97 Controller Input Assign-
ment Register (ICA).

4. Configure the output channel assignment by controlling the AC97 Controller Input
Assignment Register (OCA).

5. Configure sample width for Channel A and Channel B by writing the SIZE bit field in
AC97C Channel A Mode Register (CAMR) and AC97C Channel B Mode Register
(CBMR). The application can write 10, 16, 18,or 20-bit wide PCM samples through the
AC97 interface and they will be transferred into 20-bit wide slots.

6. Configure data Endianness for Channel A and Channel B by writing CEM bit field in
CAMR and CBMR registers. Data on the AC-link are shifted MSB first. The application
can write little- or big-endian data to the AC97 Controller interface.

7. Configure the PIO controller to drive the RESET signal of the external Codec. The
RESET signal must fulfill external AC97 Codec timing requirements.

8. Enable Channel A and/or Channel B by writing CEN bit field in CAMR and CBMR
registers.

25.7.3.2 Transmit Operation
The application must perform the following steps in order to send data via a channel to the AC97
Codec:

*Check if previous data has been sent by polling TXRDY flag in the AC97C Channel x Status
Register (CxSR). x being one of the 2 channels.
*Write data to the AC97 Controller Channel x Transmit Holding Register (CxTHR).

Once data has been transferred to the Channel x Shift Register, the TXRDY flag is automatically
set by the AC97 Controller which allows the application to start a new write action. The applica-
tion can also wait for an interrupt notice associated with TXRDY in order to send data. The
interrupt remains active until TXRDY flag is cleared..

Alm L 454

32003M-AVR32-09/09 I ©

AT32AP7000

Figure 25-5. Audio Transfer (PCM L Front, PCM R Front) on Channel x

Slot # 0 1 2 | 3 | 4 5 6 7 8 9 10 11 12
| | | |
AC97FS I :
AC97TX @ CMD>< CMD : PCM I PCM x LINE 1>< PCM PCM PCM PCM >< LINE 2 HSET>< 10 >
(Controller Output) ADDR, DATA L Fron R Fron DAC Center, L SUR R SUR LFE DAC DAC CTRL

TXRDYCx
(AC97C_SR) |_| |_ .

|
|

TXEMPTY | |
(AC97C_SR) i

|

|
Write access to T | T

T

|

AC97C_THRx

PCM L Front

|
|
T
|
|
transfered to the shift register |

PCM R Front
transfered to the shift register
The TXEMPTY flag in the AC97 Controller Channel x Status Register (CxSR) is set when all
requested transmissions for a channel have been shifted on the AC-link. The application can
either poll TXEMPTY flag in CxSR or wait for an interrupt notice associated with the same flag.

In most cases, the AC97 Controller is embedded in chips that target audio player devices. In
such cases, the AC97 Controller is exposed to heavy audio transfers. Using the polling tech-
nique increases processor overhead and may fail to keep the required pace under an operating
system.

In order to avoid these polling drawbacks, the application can perform audio streams by using a
DMA controller (DMAC) connected to both channels, which reduces processor overhead and
increases performance especially under an operating system.

The DMAC transmit counter values must be equal to the number of PCM samples to be trans-
mitted, each sample goes in one slot.

25.7.3.3 AC97 Output Frame

The AC97 Controller outputs a thirteen-slot frame on the AC-Link. The first slot (tag slot or slot 0)
flags the validity of the entire frame and the validity of each slot; whether a slot carries valid data
or not. Slots 1 and 2 are used if the application performs control and status monitoring actions
on AC97 Codec control/status registers. Slots [3:12] are used according to the content of the
AC97 Controller Output Channel Assignment Register (OCA). If the application performs many
transmit requests on a channel, some of the slots associated to this channel or all of them will
carry valid data.

Alm L 455

32003M-AVR32-09/09 I ©

25.7.3.4 Receive QOperation
The AC97 Controller can also receive data from AC97 Codec. Data is received in the channel’s
shift register and then transferred to the AC97 Controller Channel x Read Holding Register. To
read the newly received data, the application must perform the following steps:

*Poll RXRDY flag in AC97 Controller Channel x Status Register (CxSR). x being one of the 2
channels.

*Read data from AC97 Controller Channel x Read Holding Register.

The application can also wait for an interrupt notice in order to read data from CxRHR. The inter-
rupt remains active until RXRDY is cleared by reading CxSR.

The RXRDY flag in CxSR is set automatically when data is received in the Channel x shift regis-
ter. Data is then shifted to CxRHR.

Figure 25-6. Audio Transfer (PCM L Front, PCM R Front) on Channel x

Slot # 0 1 2 3 4 5 6 7 8 9 10 11 12

AC97FS _| |
STATU TATU PCM PCM LINE 1 PCM TINE 2 HSET 10
AC97RX @ ADDR DATA LEFT>< RIGHT, DAC MIC XRSVEDXRSVEDXRSVEDX ADC >< ADC XTATUS

(Codec output)
RXRDYCx | | | |
(AC97C_SR)
Read access to T T
AC97C_RHRx

If the previously received data has not been read by the application, the new data overwrites the
data already waiting in CxRHR, therefore the OVRUN flag in CxSR is raised. The application
can either poll the OVRUN flag in CxSR or wait for an interrupt notice. The interrupt remains
active until the OVRUN flag in CxSR is set.

The AC97 Controller can also be used in sound recording devices in association with an AC97
Codec. The AC97 Controller may also be exposed to heavy PCM transfers.

The application can use the DMAC connected to both channels in order to reduce processor
overhead and increase performance especially under an operating system.

The DMAC receive counter values must be equal to the number of PCM samples to be received.
When more than one timeslot is assigned to a channel using DMA, the different timeslot sam-
ples will be interleaved.

25.7.3.5 AC97 Input Frame
The AC97 Controller receives a thirteen slot frame on the AC-Link sent by the AC97 Codec. The
first slot (tag slot or slot 0) flags the validity of the entire frame and the validity of each slot;
whether a slot carries valid data or not. Slots 1 and 2 are used if the application requires status
informations from AC97 Codec. Slots [3:12] are used according to AC97 Controller Output
Channel Assignment Register (ICA) content. The AC97 Controller will not receive any data from
any slot if ICA is not assigned to a channel in input.

Alm L 456

32003M-AVR32-09/09 I ©

25.7.3.6 Configuring and Using Interrupts
Instead of polling flags in AC97 Controller Global Status Register (SR) and in AC97 Controller
Channel x Status Register (CxSR), the application can wait for an interrupt notice. The following
steps show how to configure and use interrupts correctly:

*Set the interruptible flag in AC97 Controller Channel x Mode Register (CxMR).
*Set the interruptible event and channel event in AC97 Controller Interrupt Enable Register
(IER).
The interrupt handler must read both AC97 Controller Global Status Register (SR) and AC97
Controller Interrupt Mask Register (IMR) and AND them to get the real interrupt source. Further-
more, to get which event was activated, the interrupt handler has to read AC97 Controller
Channel x Status Register (CxSR), x being the channel whose event triggers the interrupt.

The application can disable event interrupts by writing in AC97 Controller Interrupt Disable Reg-
ister (IDR). The AC97 Controller Interrupt Mask Register (IMR) shows which event can trigger
an interrupt and which one cannot.

25.7.3.7 Endianness
Endianness can be managed automatically for each channel, except for the Codec channel, by
writing to Channel Endianness Mode (CEM) in CxMR. This enables transferring data on AC-link
in Little Endian format without any additional operation.

25.7.3.8 To Transmit a Word Stored in Little Endian Format on AC-link
Word to be written in AC97 Controller Channel x Transmit Holding Register (CxTHR) (as it is
stored in memory or microprocessor register).

31 24 23 16 15 8 7 0
Byte3[7:0] | Byte2[7:0] | Byte1[7:0] | Byte0[7:0] |

Word stored in Channel x Transmit Holding Register (AC97C_CxTHR) (data to transmit).

31 24 23 20 19 16 15 8 7 0
- | - | Byte1[3:0] | Byte2[7:0] | Byte3[7:0] |

Data transmitted on appropriate slot: data[19:0] = {Byte1[3:0], Byte2[7:0], Byte3[7:0]}.
25.7.3.9 To Transmit A Halfword Stored in Little Endian Format on AC-link
Halfword to be written in AC97 Controller Channel x Transmit Holding Register (CxTHR).

31 24 23 16 15 8 7 0
- | - | ByteQ[7:0] | Byte1[7:0] |

Halfword stored in AC97 Controller Channel x Transmit Holding Register (CxTHR) (data to
transmit).

31 24 23 16 15 8 7 0
- | - | Byte1[7:0] | Byte0[7:0]

Data emitted on related slot: data[19:0] = {Byte1[7:0], Byte0[7:0], 0x0}.

Alm L 457

32003M-AVR32-09/09 I ©

25.7.3.10 To Transmit a10-bit Sample Stored in Little Endian Format on AC-link
Halfword to be written in AC97 Controller Channel x Transmit Holding Register (CxTHR).
31 24 23 16 15 8 7 0
- | - | ByteQ[7:0] | {0x00, Byte1[1:0]} |
Halfword stored in AC97 Controller Channel x Transmit Holding Register (CxTHR) (data to
transmit).
31 24 23 16 15 10 9 8 7 0
Byte1 .
- - - [4:0] Byte0[7:0]
Data emitted on related slot: data[19:0] = {Byte1[1:0], Byte0[7:0], 0x000}.
25.7.3.11 To Receive Word transfers
Data received on appropriate slot: data[19:0] = {Byte2[3:0], Byte1[7:0], Byte0[7:0]}.
Word stored in AC97 Controller Channel x Receive Holding Register (CxRHR) (Received Data).
31 24 23 20 19 16 15 8 7 0
- | - | Byte2[3:0] | Byte1[7:0] | Byte0[7:0] |
Data is read from AC97 Controller Channel x Receive Holding Register (CxRHR) when Channel
x data size is greater than 16 bits and when little endian mode is enabled (data written to
memory).
31 24 23 16 15 8 7 0
| Byte0[7:0] | Byte1[7:0] | {0x0, Byte2[3:0]} | 0x00
25.7.3.12 To Receive Halfword Transfers
Data received on appropriate slot: data[19:0] = {Byte1[7:0], Byte0[7:0], 0xO0 }.
Halfword stored in AC97 Controller Channel x Receive Holding Register (CxRHR) (Received
Data).
31 24 23 16 15 8 7 0
- | - | Byte1[7:0] | Byte0[7:0] |
Data is read from AC97 Controller Channel x Receive Holding Register (CxRHR) when data size
is equal to 16 bits and when little endian mode is enabled.
31 24 23 16 15 8 7 0
- | - | ByteQ[7:0] | Byte1[7:0]
25.7.3.13 To Receive 10-bit Samples
Data received on appropriate slot: data[19:0] = {Byte1[1:0], Byte0[7:0], 0x000}. Halfword stored
in AC97 Controller Channel x Receive Holding Register (CxRHR) (Received Data)
31 24 23 16 15 i0 9 8 7 0
Byte1 .
_ - - 1:0] Byte0[7:0]

Alm L 458

32003M-AVR32-09/09 I ©

31

Data read from AC97 Controller Channel x Receive Holding Register (CxRHR) when data size is
equal to 10 bits and when little endian mode is enabled.

24 23 16 15 8 7 3 1 0

Byte1

- Byte0[7:0] 0x00 [1:0]

25.7.4 Variable Sample Rate

The problem of variable sample rate can be summarized by a simple example. When passing a
44.1 kHz stream across the AC-link, for every 480 audio output frames that are sent across, 441
of them must contain valid sample data. The new AC97 standard approach calls for the addition
of “on-demand” slot request flags. The AC97 Codec examines its sample rate control register,
the state of its FIFOs, and the incoming SDATA_OUT tag bits (slot 0) of each output frame and
then determines which SLOTREQ bits to set active (low). These bits are passed from the AC97
Codec to the AC97 Controller in slot 1/SLOTREQ in every audio input frame. Each time the
AC97 controller sees one or more of the newly defined slot request flags set active (low) in a
given audio input frame, it must pass along the next PCM sample for the corresponding slot(s) in
the AC-link output frame that immediately follows.

The variable Sample Rate mode is enabled by performing the following steps:

*Setting the VRA bit in the AC97 Controller Mode Register (MR).

*Enable Variable Rate mode in the AC97 Codec by performing a transfer on the Codec
channel.

Slot 1 of the input frame is automatically interpreted as SLOTREQ signaling bits. The AC97 Con-
troller will automatically fill the active slots according to both SLOTREQ and OCA register in the
next transmitted frame.

25.7.5 Power Management

25.7.5.1 Powering Down the AC-Link

32003M-AVR32-09/09

The AC97 Codecs can be placed in low power mode. The application can bring AC97 Codec to
a power down state by performing sequential writes to AC97 Codec powerdown register . Both
the bit clock (clock delivered by AC97 Codec, SCLK) and the input line (SDI) are held at a logic
low voltage level. This puts AC97 Codec in power down state while all its registers are still hold-
ing current values. Without the bit clock, the AC-link is completely in a power down state.

The AC97 Controller should not attempt to play or capture audio data until it has awakened
AC97 Codec.

To set the AC97 Codec in low power mode, the PR4 bit in the AC97 Codec powerdown register
(Codec address 0x26) must be set to 1. Then the primary Codec drives both BITCLK and SDI to
a low logic voltage level.

The following operations must be done to put AC97 Codec in low power mode:
*Disable Channel A clearing CEN in the CAMR register.
*Disable Channel B clearing CEN field in the CBMR register.
*Write 0x2680 value in the COTHR register.

*Poll the TXEMPTY flag in CxSR registers for the 2 channels.
At this point AC97 Codec is in low power mode.

Alm L 459

Y 5

25.7.5.2 Waking up the AC-link

There are two methods to bring the AC-link out of low power mode. Regardless of the method, it
is always the AC97 Controller that performs the wake-up.

25.7.5.3 Wake-up Tiggered by the AC97 Controller

The AC97 Controller can wake up the AC97 Codec by issuing either a cold or a warm reset.

The AC97 Controller can also wake up the AC97 Codec by asserting SYNC signal, however this
action should not be performed for a minimum period of four audio frames following the frame in
which the powerdown was issued.

25.7.5.4 Wake-up Triggered by the AC97 Codec

This feature is implemented in AC97 modem codecs that need to report events such as Caller-
ID and wake-up on ring.

The AC97 Codec can drive SDI signal from low to high level and holding it high until the control-
ler issues either a cold or a warm reset. The SDI rising edge is asynchronously (regarding
SYNC) detected by the AC97 Controller. If WKUP bit is enabled in IMR register, an interrupt is
triggered that wakes up the AC97 Controller which should then immediately issue a cold or a
warm reset.

If the processor needs to be awakened by an external event, the SDI signal must be externally
connected to the WAKEUP entry of the system controller.

Figure 25-7. AC97 Power-Down/Up Sequence

AC97CK

AC97FS

AC97TX

AC97RX

32003M-AVR32-09/09

Wake Event
Power Down Frame Sleep State Warm Reset New Audio Frame
|

T

!

PN S

I
I
I
L
I |
I
I
T P
I I !
I

I
Write to Data \ | | |
, PR4 L \ [/ TAG Slot1 Slot2

T
| | o |

| |] |
Data \ |) _El |
@ m PR4 X TAG Slot1 Slot2

Alm L 460

Y 5

25.7.5.5 AC97 Codec Reset

There are three ways to reset an AC97 Codec.

25.7.5.6 Cold AC97 Reset

A cold reset is generated by asserting the RESET signal low for the minimum specified time
(depending on the AC97 Codec) and then by de-asserting RESET high. BITCLK and SYNC is
reactivated and all AC97 Codec registers are set to their default power-on values. Transfers on
AC-link can resume.

The RESET signal will be controlled via a PIO line. This is how an application should perform a
cold reset:

*Clear and set ENA flag in the MR register to reset the AC97 Controller

*Clear PIO line output controlling the AC97 RESET signal

*Wait for the minimum specified time

*Set PIO line output controlling the AC97 RESET signal
BITCLK, the clock provided by AC97 Codec, is detected by the controller.

25.7.5.7 Warm AC97 Reset

32003M-AVR32-09/09

A warm reset reactivates the AC-link without altering AC97 Codec registers. A warm reset is sig-
naled by driving AC97FX signal high for a minimum of 1us in the absence of BITCLK. In the
absence of BITCLK, AC97FX is treated as an asynchronous (regarding AC97FX) input used to
signal a warm reset to AC97 Codec.

This is the right way to perform a warm reset:
*Set WRST in the MR register.
*Wait for at least 1us

*Clear WRST in the MR register.

The application can check that operations have resumed by checking SOF flag in the SR regis-
ter or wait for an interrupt notice if SOF is enabled in IMR.

Alm L 461

Y 5

25.8 AC97 Controller (AC97C) User Interface

Table 25-4. Register Mapping

Offset Register Register Name Access Reset
0x0-0x4 Reserved - - -
0x8 Mode Register MR Read/Write 0x0
oxC Reserved - - -
0x10 Input Channel Assignment Register ICA Read/Write 0x0
0x14 Output Channel Assignment Register OCA Read/Write 0x0
0x18-0x1C Reserved - - -
0x20 Channel A Receive Holding Register CARHR Read 0x0
0x24 Channel A Transmit Holding Register CATHR Write -
0x28 Channel A Status Register CASR Read 0x0
0x2C Channel A Mode Register CAMR Read/Write 0x0
0x30 Channel B Receive Holding Register CBRHR Read 0x0
0x34 Channel B Transmit Holding Register CBTHR Write -
0x38 Channel B Status Register CBSR Read 0x0
0x3C Channel B Mode Register CBMR Read/Write 0x0
0x40 Codec Receive Holding Register CORHR Read 0x0
0x44 Codec Transmit Holding Register COTHR Write -
0x48 Codec Status Register COSR Read 0x0
0x4C Codec Mode Register COMR Read/Write 0x0
0x50 Status Register SR Read 0x0
0x54 Interrupt Enable Register IER Write -
0x58 Interrupt Disable Register IDR Write -
0x5C Interrupt Mask Register IMR Read 0x0
0x60-0xFB Reserved - - -

AIMEL 162

32003M-AVR32-09/09 I ©

25.8.1 AC97 Controller Mode Register

Name: MR

Access Type: Read-Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - | - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - - |
7 6 5 4 3 2 1 0

| - | - | - | - | - | VRA [WRST | ENA |

VRA: Variable Rate (for Data Slots 3-12)
: Variable Rate is inactive. (48 KHz only)
: Variable Rate is active.
WRST: Warm Reset
: Warm Reset is inactive.
: Warm Reset is active.
ENA: AC97 Controller Global Enable
: No effect. AC97 function as well as access to other AC97 Controller registers are disabled.
: Activates the AC97 function.

L] — O o

—_ O ® a O

A ||'|E|,® 463

32003M-AVR32-09/09

25.8.2 AC97 Controller Input Channel Assignment Register

Register Name: ICA

Access Type: Read/Write
31 30 29 28 27 26 25 24

| - | - CHID12 CHID11 |
23 22 21 20 19 18 17 16

| CHID10 CHID9 CHID8 |
15 14 13 12 11 10 9 8

| CHID8 CHID7 CHID6 CHID5 |
7 6 5 4 3 2 1 0

| CHID5 | CHID4 CHID3 |

» CHIDx: Channel ID for the input slot x

CHIDx Selected Receive Channel
0x0 None. No data will be received during this Slot x
0x1 Channel A data will be received during this slot time.
0x2 Channel B data will be received during this slot time

32003M-AVR32-09/09

ATMEL

Y 5

464

25.8.3 AC97 Controller Output Channel Assignment Register

Register Name: OCA

Access Type: Read/Write
31 30 29 28 27 26 25 24

| - | - CHID12 CHID11 |
23 22 21 20 19 18 17 16

| CHID10 CHID9 CHID8 |
15 14 13 12 11 10 9 8

| CHID8 CHID7 CHID6 CHID5 |
7 6 5 4 3 2 1 0

| CHID5 | CHID4 CHID3 |

» CHIDx: Channel ID for the output slot x

CHIDx Selected Transmit Channel
0x0 None. No data will be transmitted during this Slot x
0x1 Channel A data will be transferred during this slot time.
0x2 Channel B data will be transferred during this slot time

32003M-AVR32-09/09

ATMEL

Y 5

465

25.8.4 AC97 Controller Codec Channel Receive Holding Register
Register Name: CORHR
Access Type: Read-only
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| SDATA |
7 6 5 4 3 2 1 0
SDATA |

e SDATA: Status Data

Data sent by the CODEC in the third AC97 input frame slot (Slot 2).

32003M-AVR32-09/09

ATMEL

466

25.8.5 AC97 Controller Codec Channel Transmit Holding Register

Register Name: COTHR

Access Type: Write-only
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

| READ | CADDR |
15 14 13 12 11 10 9 8

| CDATA |
7 6 5 4 3 2 1 0

| CDATA |

¢ READ: Read/Write command

0: Write operation to the CODEC register indexed by the CADDR address.
1: Read operation to the CODEC register indexed by the CADDR address.
This flag is sent during the second AC97 frame slot

e CADDR: CODEC control register index

Data sent to the CODEC in the second AC97 frame slot.

e CDATA: Command Data

Data sent to the CODEC in the third AC97 frame slot (Slot 2).

Alm L 467

32003M-AVR32-09/09 I ©

25.8.6 AC97 Controller Channel A, Channel B Receive Holding Register

Register Name:

CARHR, CBRHR

Access Type: Read-only
31 30 29 28 27 26 25 24
I - SR - - — |
23 22 21 20 19 18 17 16
| - [- - - [RDATA |
15 14 13 12 11 10 9 8
| RDATA |
7 6 5 4 3 2 1 0
RDATA |

e RDATA: Receive Data
Received Data on channel x.

32003M-AVR32-09/09

ATMEL

468

25.8.7 AC97 Controller Channel A, channel B Transmit Holding Register
Register Name: CATHR, CBTHR
Access Type: Write-only
31 30 29 28 27 26 25 24
| 23 | 22 21 20 | 19 18 17 16 |
| - | - - - | TDATA |
15 14 13 12 11 10 9 8
| TDATA |
7 6 5 4 3 2 1 0
TDATA |

e TDATA: Transmit Data
Data to be sent on channel x.

32003M-AVR32-09/09

ATMEL

469

25.8.8 AC97 Controller Channel A Status Register

Register Name: CASR

Access Type: Read-only
31 30 29 28 27 26 25 24

r - rr - r - [- [- N
23 22 21 20 19 18 17 16

r - r - - [- [- - - [-]
15 14 13 12 1 10 9 8

. - rr - - [- [- S N
7 6 5 4 3 2 1 0

| - | - | OVRUN | RXRDY | - UNRUN | TXEMPTY | TXRDY |

25.8.9 AC97 Controller Channel B Status Register

Register Name: CBSR

Access Type: Read-only
31 30 29 28 27 26 25 24

r - r - - [- [- - - [-]
23 22 21 20 19 18 17 16

. - r - - [- [- - - [-]
15 14 13 12 11 10 9 8

L - | - [- | S N
7 5 4 2 1 0

| - | - | OVRUN | RXRDY | UNRUN | TXEMPTY | TXRDY |

25.8.10 AC97 Controller Codec Channel Status Register

Register Name: COSR

Access Type: Read-only
31 30 29 28 27 26 25 24

. - r - - [- [- - - [-]
23 22 21 20 19 18 17 16

- T — T -— T - T - SR I R
15 14 13 12 11 10 9 8

. - rr - - [- [- - - [-]
7 6 5 4 3 2 1 0

| - | - | OVRUN | RXRDY | - - | TXEMPTY | TXRDY |

e . O & 4. O

- O

32003M-AVR32-09/09

TXRDY: Channel Transmit Ready

TXEMPTY: Channel Transmit Empty

RXRDY: Channel Receive Ready

: Channel Receive Holding Register is empty.
: Data has been received and loaded in Channel Receive Holding Register.

ATMEL

: Data remains in the Channel Transmit Register or is currently transmitted from the Channel Transmit Shift Register.
: Data in the Channel Transmit Register have been loaded in the Channel Transmit Shift Register and sent to the codec.

: Data has been loaded in Channel Transmit Register and is waiting to be loaded in the Channel Transmit Shift Register.
: Channel Transmit Register is empty.

470

e OVRUN: Receive Overrun
Automatically cleared by a processor read operation.

0: No data has been loaded in the Channel Receive Holding Register while previous data has not been read since the last
read of the Status Register.

1: Data has been loaded in the Channel Receive Holding Register while previous data has not yet been read since the last
read of the Status Register.

Alm L 471

32003M-AVR32-09/09 I ©

25.8.11 AC97 Controller Channel A Mode Register

Register Name: CAMR

Access Type: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - - |
23 22 21 20 19 18 17 16

| - | DMAEN | CEN | - | - | CEM | SIZE |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - | OVRUN | RXRDY | - | UNRUN | TXEMPTY | TXRDY |

DMAEN: DMA Enable

: Disable DMA transfers for this channel.

: Enable DMA transfers for this channel using DMAC.
CEM: Channel A Endian Mode

: Transferring Data through Channel A is straight forward (Big Endian).

: Transferring Data through Channel A from/to a memory is performed with from/to Little Endian format translation.
SIZE: Channel A Data Size

SIZE Encoding

- O ® a4 O

SIZE Selected Channel
0x0 20 bits
0x1 18bits
0x2 16 bits
0x3 10 bits

Note: Each time slot in the data phase is 20 bit long. For example, if a 16-bit sample stream is being played to an AC 97 DAC, the first
16 bit positions are presented to the DAC MSB-justified. They are followed by the next four bit positions that the AC97 Controller
fills with zeroes. This process ensures that the least significant bits do not introduce any DC biasing, regardless of the imple-
mented DAC’s resolution (16-, 18-, or 20-bit).

e CEN: Channel A Enable
0: Data transfer is disabled on Channel A.
1: Data transfer is enabled on Channel A.

AIMEL 472

32003M-AVR32-09/09 I ©

25.8.12 AC97 Controller Channel B Mode Register

Register Name: CBMR

Access Type: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - - |
23 22 21 20 19 18 17 16

| - | DMAEN | CEN | - | - | CEM | SIZE |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - | OVRUN | RXRDY | - | UNRUN | TXEMPTY | TXRDY |

DMAEN: DMA Enable

: Disable DMA transfers for this channel.

: Enable DMA transfers for this channel using DMAC.
CEM: Channel B Endian Mode

: Transferring Data through Channel B is straight forward (Big Endian).

: Transferring Data through Channel B from/to a memory is performed with from/to Little Endian format translation.
SIZE: Channel B Data Size

SIZE Encoding

- O ® a4 O

SIZE Selected Channel
0x0 20 bits
0x1 18bits
0x2 16 bits
0x3 10 bits

Note: Each time slot in the data phase is 20 bit long. For example, if a 16-bit sample stream is being played to an AC 97 DAC, the first
16 bit positions are presented to the DAC MSB-justified. They are followed by the next four bit positions that the AC97 Controller
fills with zeroes. This process ensures that the least significant bits do not introduce any DC biasing, regardless of the imple-
mented DAC’s resolution (16-, 18-, or 20-bit).

e CEN: Channel B Enable
0: Data transfer is disabled on Channel B.
1: Data transfer is enabled on Channel B.

AIMEL 473

32003M-AVR32-09/09 I ©

25.8.13 AC97 Controller Codec Channel Mode Register

Register Name: COMR

Access Type: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - | - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - - |
7 6 5 4 3 2 1 0

| - | - | OVRUN | RXRDY | - | - | TXEMPTY | TXRDY |

TXRDY: Channel Transmit Ready Interrupt Enable

TXEMPTY: Channel Transmit Empty Interrupt Enable

RXRDY: Channel Receive Ready Interrupt Enable

OVRUN: Receive Overrun Interrupt Enable
: Read: the corresponding interrupt is disabled. Write: disables the corresponding interrupt.
: Read: the corresponding interrupt is enabled. Write: enables the corresponding interrupt.

= O

Alm L 474

32003M-AVR32-09/09 I ©

25.8.14 AC97 Controller Status Register

Register Name: SR

Access Type: Read-only
31 30 29 28 27 26 25 24

. - - r - r -+ - r - 1 - [- |
23 22 21 20 19 18 17 16

. - r - r - -+ - r - - [- |
15 14 13 12 11 10 9 8

. - r - r - -+ - r - ¢ - [- |
7 6 5 4 3 2 1 0

| - | - | - | CBEVT | CAEVT | COEVT | WKUP | SOF |

WKUP and SOF flags in SR register are automatically cleared by a processor read operation.
e SOF: Start Of Frame

0: No Start of Frame has been detected since the last read of the Status Register.

1: At least one Start of frame has been detected since the last read of the Status Register.

¢ WKUP: Wake Up detection

0: No Wake-up has been detected.

1: At least one rising edge on SDATA_IN has been asynchronously detected. That means AC97 Codec has notified a
wake-up.
e COEVT: CODEC Channel Event

A Codec channel event occurs when COSR AND COMR is not 0. COEVT flag is automatically cleared when the channel
event condition is cleared.

0: No event on the CODEC channel has been detected since the last read of the Status Register.
1: At least one event on the CODEC channel is active.
e CAEVT: Channel A Event

A channel A event occurs when CASR AND CAMR is not 0. CAEVT flag is automatically cleared when the channel event
condition is cleared.

0: No event on the channel A has been detected since the last read of the Status Register.
1: At least one event on the channel A is active.
e CBEVT: Channel B Event

A channel B event occurs when CBSR AND CBMR is not 0. CBEVT flag is automatically cleared when the channel event
condition is cleared.

0: No event on the channel B has been detected since the last read of the Status Register.
1: At least one event on the channel B is active.

Alm L 475

32003M-AVR32-09/09 I ©

25.8.15 AC97 Controller Interrupt Enable Register

Register Name: IER

Access Type: Write-only
31 30 29 28 27 26 25 24

. - - r - - [- [- | N
23 22 21 20 19 18 17 16

. - r - - - [- [- | S
15 14 13 12 11 10 9 8

. - r - - - [- [- | - [-]
7 6 5 4 3 2 1 0

| - | - | - | CBEVT | CAEVT | COEVT | WKUP | SOF |

SOF: Start Of Frame
WKUP: Wake Up
COEVT: Codec Event
CAEVT: Channel A Event
CBEVT: Channel B Event
: No Effect.
: Enables the corresponding interrupt.

- O

AIMEL a7

32003M-AVR32-09/09

25.8.16 AC97 Controller Interrupt Disable Register

Register Name: IDR

Access Type: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - | - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - - |
7 6 5 4 3 2 1 0

| - | - | - | CBEVT | CAEVT | COEVT | WKUP | SOF |

SOF: Start Of Frame
WKUP: Wake Up
COEVT: Codec Event
CAEVT: Channel A Event
CBEVT: Channel B Event
: No Effect.
: Disables the corresponding interrupt.

- O

A mE|,® 477

32003M-AVR32-09/09

25.8.17 AC97 Controller Interrupt Mask Register

Register Name: IMR

Access Type: Read-only
31 30 29 28 27 26 25 24

. - - r - - [- [- | N
23 22 21 20 19 18 17 16

. - r - - - [- [- | S
15 14 13 12 11 10 9 8

. - r - - - [- [- | - [-]
7 6 5 4 3 2 1 0

| - | - | - | CBEVT | CAEVT | COEVT | WKUP | SOF |

SOF: Start Of Frame

WKUP: Wake Up

COEVT: Codec Event

CAEVT: Channel A Event

CBEVT: Channel B Event
: The corresponding interrupt is disabled.
: The corresponding interrupt is enabled.

- O

AIMEL a7

32003M-AVR32-09/09

26. Audio Bitstream DAC (ABDAC)

Rev: 1.0.1.1
26.1 Features

Digital Stereo DAC
¢ Oversampled D/A conversion architecture
— Oversampling ratio fixed 128x
— FIR equalization filter
— Digital interpolation filter: Comb4
— 3rd Order Sigma-Delta D/A converters
Digital bitstream outputs
¢ Parallel interface
¢ Connected to DMA Controller for background transfer without CPU intervention

26.2 Description

The Audio Bitstream DAC converts a 16-bit sample value to a digital bitstream with an average
value proportional to the sample value. Two channels are supported, making the Audio Bit-
stream DAC particularly suitable for stereo audio. Each channel has a pair of complementary
digital outputs, DACn and DACn_N, which can be connected to an external high input imped-
ance amplifier.

The Audio Bitstream DAC is compromised of two 3rd order Sigma Delta D/A converter with an
oversampling ratio of 128. The samples are upsampled with a 4th order Sinc interpolation filter
(Comb4) before being input to the Sigmal Delta Modulator. In order to compensate for the pass
band frequency response of the interpolation filter and flatten the overall frequency response,
the input to the interpolation filter is first filtered with a simple 3-tap FIR filter.The total frequency
response of the Equalization FIR filter and the interpolation filter is given in Figure 26-2 on page
491. The digital output bitstreams from the Sigma Delta Modulators should be low-pass filtered
to remove high frequency noise inserted by the Modulation process.

The output DACn and DACN_N should be as ideal as possible before filtering, to achieve the
best SNR quality. The output can be connected to a class D amplifier output stage, or it can be
low pass filtered and connected to a high input impedance amplifier. A simple 1st order or higher
low pass filter that filters all the frequencies above 50 kHz should be adequate.

Alm L 479

32003M-AVR32-09/09 I ©

26.3 Block Diagram

Figure 26-1. Functional Block Diagram

Audio Bitstream DAC
clk ————»
Clock Generator » bit_clk
sample_clk

:) S COMB Sigma-Delta ,
din1[15:0] ———»{ Equalization FIR —» (INT=128) A —> DA-MOD > bit_out1

:) e COMB Sigma-Delta ,
din2[15:0] ———» Equalization FIR —» (INT=128) A —> DA-MOD - bit_out2

26.4 Pin Name List

Table 26-1. 1/O Lines Description

Pin Name Pin Description Type
DATAO Output from Audio Bitstream DAC Channel 0 Output
DATA1 Output from Audio Bitstream DAC Channel 1 Output
DATANO Inverted output from Audio Bitstream DAC Channel 0 Output
DATAN(1 Inverted output from Audio Bitstream DAC Channel 1 Output

26.5 Product Dependencies

26.5.1 I/0 Lines

The output pins used for the output bitstream from the Audio Bitstream DAC may be multiplexed
with PIO lines.

Before using the Audio Bitstream DAC, the PIO controller must be configured in order for the
Audio Bitstream DAC I/O lines to be in Audio Bitstream DAC peripheral mode.

26.5.2 Power Management
The PB-bus clock to the Audio Bitstream DAC is generated by the power manager. Before using
the Audio Bitstream DAC, the programmer must ensure that the Audio Bitstream DAC clock is
enabled in the power manager.

Alm L 480

32003M-AVR32-09/09 I ©

26.5.3

26.5.4

26.5.5

Clock Management

Interrupts

DMA

The Audio Bitstream DAC needs a separate clock for the D/A conversion operation. This clock
should be set up in the generic clock register in the power manager. The frequency of this clock
must be 256 times the frequency of the desired samplerate (f,). For f,=48kHz this means that the
clock must have a frequency of 12.288MHz.

The Audio Bitstream DAC interface has an interrupt line connected to the interrupt controller. In
order to handle interrupts, the interrupt controller must be programmed before configuring the
Audio Bitstream DAC.

All Audio Bitstream DAC interrupts can be enabled/disabled by writing to the Audio Bitstream
DAC Interrupt Enable/Disable Registers. Each pending and unmasked Audio Bitstream DAC
interrupt will assert the interrupt line. The Audio Bitstream DAC interrupt service routine can get
the interrupt source by reading the Interrupt Status Register.

The Audio Bitstream DAC is connected to the DMA controller. The DMA controller can be pro-
grammed to automatically transfer samples to the Audio Bitstream DAC Sample Data Register
(SDR) when the Audio Bitstream DAC is ready for new samples. This enables the Audio Bit-
stream DAC to operate without any CPU intervention such as polling the Interrupt Status
Register (ISR) or using interrupts. See the DMA controller documentation for details on how to
setup DMA transfers.

26.6 Functional Description

26.6.1

In order to use the Audio Bitstream DAC the product dependencies given in Section 26.5 on
page 480 must be resolved. Particular attention should be given to the configuration of clocks
and /O lines in order to ensure correct operation of the Audio Bitstream DAC.

The Audio Bitstream DAC is enabled by writing the ENABLE bit in the Audio Bitstream DAC
Control Register (CR). The two 16-bit sample values for channel 0 and 1 can then be written to
the least and most significant halfword of the Sample Data Register (SDR), respectively. The
TX_READY bit in the Interrupt Status Register (ISR) will be set whenever the DAC is ready to
receive a new sample. A new sample value should be written to SDR before 256 DAC clock
cycles, or an underrun will occur, as indicated by the UNDERRUN status flags in ISR. ISR is
cleared when read, or when writing one to the corresponding bits in the Interrupt Clear Register
(ICR).

For interrupt-based operation, the relevant interrupts must be enabled by writing one to the cor-
responding bits in the Interrupt Enable Register (IER). Interrupts can be disabled by the Interrupt
Disable Register (IDR), and active interrupts are indicated in the read-only Interrupt Mask Regis-
ter (IMR).

The Audio Bitstream DAC can also be configured for peripheral DMA access, in which case only
the enable bit in the control register needs to be set in the Audio Bitstream DAC module.

Equalization Filter

32003M-AVR32-09/09

The equalization filter is a simple 3-tap FIR filter. The purpose of this filter is to compensate for
the pass band frequency response of the sinc interpolation filter. The equalization filter makes
the pass band response more flat and moves the -3dB corner a little higher.

Alm L 481

Y 5

26.6.2 Interpolation filter
The interpolation filter interpolates from f to 128f. This filter is a 4th order Cascaded Integrator-
Comb filter, and the basic building blocks of this filter is a comb part and an integrator part.
26.6.3 Sigma Delta Modulator
This part is a 3rd order Sigma Delta Modulator consisting of three differentiators (delta blocks),
three integrators (sigma blocks) and a one bit quantizer. The purpose of the integrators is to

shape the noise, so that the noise is reduces in the band of interest and increased at the higher
frequencies, where it can be filtered.

26.6.4 Data Format

Input data is on two’s complement format.

Alm L 482

32003M-AVR32-09/09 I ©

26.7 Audio Bitstream DAC User Interface

Table 26-2. Register Mapping

Offset Register Register Name Access Reset
0x0 Sample Data Register SDR Read/Write 0x0
0x4 Reserved - - -
0x8 Control Register CR Read/Write 0x0
Oxc Interrupt Mask Register IMR Read 0x0
0x10 Interrupt Enable Register IER Write -
0x14 Interrupt Disable Register IDR Write -
0x18 Interrupt Clear Register ICR Write -

0x1C Interrupt Status Register ISR Read 0x0

AIMEL 183

32003M-AVR32-09/09 I ©

26.71 Audio Bitstream DAC Sample Data Register

Name: SDR

Access Type: Read-Write
31 30 29 28 27 26 25 24

| CHANNEL1 |
23 22 21 20 19 18 17 16

| CHANNEL1 |
15 14 13 12 11 10 9 8

| CHANNELO |
7 6 5 4 3 2 1 0

| CHANNELO |

e CHANNELO: Sample Data for Channel 0

Signed 16-bit Sample Data for channel 0. When the SWAP bit in the DAC Control Register (CR) is set writing to the Sample
Data Register (SDR) will cause the values written to CHANNELO and CHANNEL1 to be swapped.

e CHANNEL1: Sample Data for Channel 1

Signed 16-bit Sample Data for channel 1. When the SWAP bit in the DAC Control Register (CR) is set writing to the Sample
Data Register (SDR) will cause the values written to CHANNELO and CHANNEL1 to be swapped.

Alm L 484

32003M-AVR32-09/09 I ©

26.7.2 Audio Bitstream DAC Control Register

Name: CR

Access Type: Read-Write
31 30 29 28 27 26 25 24

[BN [SwAP | : I : I : I i I : I : |
23 22 21 20 19 18 17 16

I : I i I : I : I : I i I : I : |
15 14 13 12 11 10 9 8

I : I - I : I : I : I - I : I : |
7 6 5 4 3 2 1 0

I : I - I : I : I : I - I : I : |
e SWAP: Swap Channels

0: The CHANNELO and CHANNEL1 samples will not be swapped when writing the Audio Bitstream DAC Sample Data
Register (SDR).

1: The CHANNELO and CHANNEL1 samples will be swapped when writing the Audio Bitstream DAC Sample Data Regis-
ter (SDR).

e EN: Enable Audio Bitstream DAC
0: Audio Bitstream DAC is disabled.

1: Audio Bitstream DAC is enabled.

A ||'|E|,® 485

32003M-AVR32-09/09

26.7.3 Audio Bitstream DAC Interrupt Mask Register

Name: IMR

Access Type: Read-only
31 30 29 28 27 26 25 24

| - | - | TX_READY | UNDERRUN | - | - | - | - |
23 22 21 20 19 18 17 16

I : I i I : I : I : I i I : I : |
15 14 13 12 11 10 9 8

I : I - I : I : I : I - I : I : |
7 6 5 4 3 2 1 0

I : I - I : I : I : I - I : I : |
¢ UNDERRUN: Underrun Interrupt Mask
: The Audio Bitstream DAC Underrun interrupt is disabled.

o

1: The Audio Bitstream DAC Underrun interrupt is enabled.

TX_READY: TX Ready Interrupt Mask
: The Audio Bitstream DAC TX Ready interrupt is disabled.

o

1: The Audio Bitstream DAC TX Ready interrupt is enabled.

A ||'|E|,® 486

32003M-AVR32-09/09

26.7.4 Audio Bitstream DAC Interrupt Enable Register

Name: IER

Access Type: Write-only
31 30 29 28 27 26 25 24

| - | - | TX_READY | UNDERRUN | - | - | - | - |
23 22 21 20 19 18 17 16

I : I i I : I : I : I i I : I : |
15 14 13 12 11 10 9 8

I : I - I : I : I : I - I : I : |
7 6 5 4 3 2 1 0

I : I - I : I : I : I - I : I : |
¢ UNDERRUN: Underrun Interrupt Enable
: No effect.

- O

: Enables the Audio Bitstream DAC Underrun interrupt.

TX_READY: TX Ready Interrupt Enable
: No effect.

- O

: Enables the Audio Bitstream DAC TX Ready interrupt.

A ||'|E|,® 487

32003M-AVR32-09/09

26.7.5 Audio Bitstream DAC Interrupt Disable Register

Name: IDR

Access Type: Write-only
31 30 29 28 27 26 25 24

| - | - | TX_READY | UNDERRUN | - | - | - | - |
23 22 21 20 19 18 17 16

I : I i I : I : I : I i I : I : |
15 14 13 12 11 10 9 8

I : I - I : I : I : I - I : I : |
7 6 5 4 3 2 1 0

I : I - I : I : I : I - I : I : |
¢ UNDERRUN: Underrun Interrupt Disable
: No effect.

- O

: Disable the Audio Bitstream DAC Underrun interrupt.

TX_READY: TX Ready Interrupt Disable
: No effect.

- O

: Disable the Audio Bitstream DAC TX Ready interrupt.

A ||'|E|,® 488

32003M-AVR32-09/09

26.7.6 Audio Bitstream DAC Interrupt Clear Register

Name: ICR

Access Type: Write-only
31 30 29 28 27 26 25 24

| - | - | TX_READY | UNDERRUN | - | - | - | - |
23 22 21 20 19 18 17 16

I : I i I : I : I : I i I : I : |
15 14 13 12 11 10 9 8

I : I - I : I : I : I - I : I : |
7 6 5 4 3 2 1 0

I : I - I : I : I : I - I : I : |
e UNDERRUN: Underrun Interrupt Clear
: No effect.

- O

: Clear the Audio Bitstream DAC Underrun interrupt.

TX_READY: TX Ready Interrupt Clear
: No effect.

- O

: Clear the Audio Bitstream DAC TX Ready interrupt.

A ||'|E|,® 489

32003M-AVR32-09/09

26.7.7 Audio Bitstream DAC Interrupt Status Register

Name: ISR

Access Type: Read-only
31 30 29 28 27 26 25 24

| - | - | TX_READY | UNDERRUN | - | - | - | - |
23 22 21 20 19 18 17 16

I : I i I : I : I : I i I : I : |
15 14 13 12 11 10 9 8

I : I - I : I : I : I - I : I : |
7 6 5 4 3 2 1 0

e UNDERRUN: Underrun Interrupt Status
0: No Audio Bitstream DAC Underrun has occured since the last time ISR was read or since reset.

1: At least one Audio Bitstream DAC Underrun has occured since the last time ISR was read or since reset.

TX_READY: TX Ready Interrupt Status
: No Audio Bitstream DAC TX Ready has occuredt since the last time ISR was read.

- O

: At least one Audio Bitstream DAC TX Ready has occuredt since the last time ISR was read.

Alm L 490

32003M-AVR32-09/09 I ©

26.8 Frequency Response

Figure 26-2. Frequecy response, EQ-FIR+COMB*

A ||'|E|'® 491

32003M-AVR32-09/09

27. Static Memory Controller (SMC)

Rev. 1.0.0.3
27.1 Features

* 6 chip selects available

* 64-Mbytes address space per chip select

¢ 8-, 16- or 32-bit data bus

* Word, halfword, byte transfers

* Byte write or byte select lines

* Programmable setup, pulse and hold time for read signals per chip select
* Programmable setup, pulse and hold time for write signals per chip select
* Programmable data float time per chip select

¢ Compliant with LCD module

¢ External wait request

¢ Automatic switch to slow clock mode

¢ Asynchronous read in page mode supported: page size ranges from 4 to 32 bytes

27.2 Overview

The Static Memory Controller (SMC) generates the signals that control the access to the exter-
nal memory devices or peripheral devices. It has 6 chip selects and a 26-bit address bus. The
32-bit data bus can be configured to interface with 8-, or16-, or 32-bit external devices. Separate
read and write control signals allow for direct memory and peripheral interfacing. Read and write
signal waveforms are fully parametrizable.

The SMC can manage wait requests from external devices to extend the current access. The
SMC is provided with an automatic slow clock mode. In slow clock mode, it switches from user-
programmed waveforms to slow-rate specific waveforms on read and write signals. The SMC
supports asynchronous burst read in page mode access for page size up to 32 bytes.

AIMEL 192

32003M-AVR32-09/09 I ©

27.3 Block Diagram

Figure 27-1. SMC Block Diagram

NCS[5:0]

A 4

—>{ | Nesisi)
NRD
sSMC
MB‘:S. Chip Select —PD NRD
atrix > NWRO/NWE
—» | nweo
> 5[] ApDRIO]
1o]
> EBI ”|Controlle NWE1

A1/NWR2/NBS2 |Mux Logi
_>|:| ADDRI[1]

—>|:| NWE3
> > _>|:| ADDR[25:2]
<—>|:| DATA[31:0]
< NWAIT P <_|:| NWAIT

\ 4
Y

Y
A 4

AO/NBSO

\ 4

SMC NWR1/NBS1

\ 4
\ 4

Power CLK_SMC
———>
Manager NWR3/NBS3

\ 4
\ 4

A[25:2]

D[31:0]

-
<

A
Y

User Interface

4

Peripheral Bus i

27.4 1/0 Lines Description

Table 27-1. 1/O Lines Description

Pin Name Pin Description Type Active Level
NCS[5:0] Chip Select Lines Output Low
NRD Read Signal Output Low
NWRO/NWE Write 0/Write Enable Signal Output Low
AO0/NBSO Address Bit 0/Byte 0 Select Signal Output Low
NWR1/NBS1 Write 1/Byte 1 Select Signal Output Low
A1/NWR2/NBS2 Address Bit 1/Write 2/Byte 2 Select Signal Output Low
NWR3/NBS3 Write 3/Byte 3 Select Signal Output Low
A[25:2] Address Bus Output

D[31:0] Data Bus Input/Output

NWAIT External Wait Signal Input Low

AIMEL 193

32003M-AVR32-09/09 I ©

27.5 Product Dependencies

27.5.1

27.5.2

I/0 Lines

Clocks

In order to use this module, other parts of the system must be configured correctly, as described

below.

The SMC signals pass through the External Bus Interface (EBI) module where they are multi-
plexed. The user must first configure the I/O Controller to assign the EBI pins corresponding to
SMC signals to their peripheral function. If the I/O lines of the EBI corresponding to SMC signals

are not used by the application, they can be used for other purposes by the 1/0 Controller.

The clock for the SMC bus interface (CLK_SMC) is generated by the Power Manager. This clock
is enabled at reset, and can be disabled in the Power Manager. It is recommended to disable the

SMC before disabling the clock, to avoid freezing the SMC in an undefined state.

27.6 Functional Description

27.6.1

Application Example

Figure 27-2. SMC Connections to Static Memory Devices

27.6.2

DO-D31

AO/NBSO
NWRO/NWE
NWR1/NBS1
A1/NWR2/NBS2
NWR3/NBS3

A2-A25

Static Memory
Controller

)

N\/\ﬁS/ NBS3

128K x 8 128K x 8
SRAM SRAM
[po-o7| o DeD1y o oo
cs cs
AO0-At6 [AZA18 AO-A1G |_A2-A18
NRD o NRD | o
NWRONWE | e NWF1/NBS1 WE
128K x 8 128K x 8
D16-D23 SRAM D24-D31 SRAM
DO-D7 DO-D7
cs s A2-A18
AO-Al6 [AZAT18 AO-A16
NRD
AUNWR2NBS2| | WE

External Memory Mapping

32003M-AVR32-09/09

The SMC provides up to 26 address lines, A[25:0]. This allows each chip select line to address
up to 64 Mbytes of memory.

ATMEL

Y 5

494

If the physical memory device connected on one chip select is smaller than 64 Mbytes, it wraps
around and appears to be repeated within this space. The SMC correctly handles any valid
access to the memory device within the page (see Figure 27-3 on page 495).

A[25:0] is only significant for 8-bit memory, A[25:1] is used for 16-bit memory, A[25:2] is used for
32-bit memory.

Figure 27-3. Memory Connections for Six External Devices

NCSI[O0] - NCS[5]
NRD
SMC NWE
NCS5
I Memory Enable
A[25:0] NCS4 T™Memory Enable
D[31:0] NCS3 l
I Memory Enable
NCS2 |
| Memory Enable
NCS1 I Memory Enable
NCSO0
Memory Enable —
Output Enable —
Write Enable —
A[25:0] —
8or160r32 | py31:0] or D15:0] or| |
D[7:0]

27.6.3 Connection to External Devices

27.6.3.1 Data bus width

A data bus width of 8, 16, or 32 bits can be selected for each chip select. This option is con-
trolled by the Data Bus Width field in the Mode Register (MODE.DBW) for the corresponding
chip select.

Figure 27-4 on page 496 shows how to connect a 512K x 8-bit memory on NCS2. Figure 27-5 on
page 496 shows how to connect a 512K x 16-bit memory on NCS2. Figure 27-6 shows two 16-
bit memories connected as a single 32-bit memory.

27.6.3.2 Byte write or byte select access

Each chip select with a 16-bit or 32-bit data bus can operate with one of two different types of
write access: byte write or byte select access. This is controlled by the Byte Access Type bit in
the MODE register (MODE.BAT) for the corresponding chip select.

Alm L 495

32003M-AVR32-09/09 I ©

Figure 27-4. Memory Connection for an 8-bit Data Bus
D[7:0] D[7:0]
Al18:2] A[18:2]
AO AO
SMC A1 Al
NWE Write Enable
NRD Output Enable
NCS[2] Memory Enable
Figure 27-5. Memory Connection for a 16-bit Data Bus
D[15:0] D[15:0]
Al19:2] A[18:1]
A1 A[0]
SMC NBSO Low Byte Enable
NBS1 High Byte Enable
NWE Write Enable
NRD Output Enable
NCS[2] Memory Enable

Figure 27-6. Memory Connection for a 32-bit Data Bus

D[31:1
D[31:16] [31:16]
D[15:0] D[15:0]
Al20:2] A[18:0]

SMC NBSO Byte 0 Enable
NBS1 Byte 1 Enable
NBS2 Byte 2 Enable
NBS3 Byte 3 Enable
NWE Write Enable

NRD Output Enable
NCS[2] Memory Enable

*Byte write access

The byte write access mode supports one byte write signal per byte of the data bus and a single
read signal.

Note that the SMC does not allow boot in byte write access mode.

AIMEL 496

Y 5

32003M-AVR32-09/09

* For 16-bit devices: the SMC provides NWRO and NWR1 write signals for respectively byte0
(lower byte) and byte1 (upper byte) of a 16-bit bus. One single read signal (NRD) is provided.
The byte write access mode is used to connect two 8-bit devices as a 16-bit memory.

* For 32-bit devices: NWRO, NWR1, NWR2 and NWR3, are the write signals of byteO (lower
byte), byte1, byte2, and byte 3 (upper byte) respectively. One single read signal (NRD) is
provided. The byte write access is used to connect four 8-bit devices as a 32-bit memory.

The byte write option is illustrated on Figure 27-7 on page 497.

*Byte select access

In this mode, read/write operations can be enabled/disabled at a byte level. One byte select line
per byte of the data bus is provided. One NRD and one NWE signal control read and write.

* For 16-bit devices: the SMC provides NBSO and NBS1 selection signals for respectively byteO
(lower byte) and byte1 (upper byte) of a 16-bit bus. The byte select access is used to connect
one 16-bit device.

* For 32-bit devices: NBS0, NBS1, NBS2 and NBS3, are the selection signals of byte0 (lower
byte), byte1, byte2, and byte 3 (upper byte) respectively. The byte select access is used to
connect two 16-bit devices.

Figure 27-8 on page 498 shows how to connect two 16-bit devices on a 32-bit data bus in byte
select access mode, on NCS3.

Figure 27-7. Connection of two 8-bit Devices on a 16-bit Bus: Byte Write Option

D[7:0] D[7:0]
D[15:8] |
A[24:2] A[23:1]
SMC A1 A[0]
NWRO Write Enable
NWR1
NRD Read Enable
NCS[3] Memory Enable
D[15:8]
A[23:1]
A[0]
Write Enable
Read Enable
Memory Enable

Signal multiplexing

Depending on the MODE.BAT bit, only the write signals or the byte select signals are used. To
save I/Os at the external bus interface, control signals at the SMC interface are multiplexed.

Alm L 497

32003M-AVR32-09/09 I ©

For 32-bit devices, bits A0 and A1 are unused. For 16-bit devices, bit A0 of address is unused.
When byte select option is selected, NWR1 to NWR3 are unused. When byte write option is
selected, NBSO to NBS3 are unused.

Figure 27-8. Connection of two 16-bit Data Bus on a 32-bit Data Bus: Byte Select Option

D[15:0] D[15:0]
D[31:16] |—
A[25:2] A[23:0]
NWE Write Enable
NBSO Low Byte Enable
NBS1 High Byte Enable
SMC NBS2
NBS3
NRD Read Enable
NCS[3] Memory Enable
D[31:16]
A[23:0]
Write Enable
Low Byte Enable
High Byte Enable
Read Enable
Memory Enable

Table 27-2. SMC Multiplexed Signal Translation

Signal Name 32-bit Bus 16-bit Bus 8-bit Bus
Device Type 1 x 32-bit 2 x 16-bit 4 x 8-bit 1 x 16-bit 2 x 8-bit 1 x 8-bit
Byte Access Type (BAT) Byte Select Byte Select Byte Write Byte Select Byte Write

NBSO_AO0 NBSO NBSO NBSO A0
NWE_NWRO0 NWE NWE NWRO0 NWE NWRO0 NWE
NBS1_NWRH1 NBS1 NBS1 NWR1 NBS1 NWRH1

NBS2_NWR2_A1 NBS2 NBS2 NWR2 A1l Al Al
NBS3_NWR3 NBS3 NBS3 NWR3

AIMEL 498

32003M-AVR32-09/09 I ©

27.6.4 Standard Read and Write Protocols

In the following sections, the byte access type is not considered. Byte select lines (NBSO to
NBS3) always have the same timing as the address bus (A). NWE represents either the NWE
signal in byte select access type or one of the byte write lines (NWRO to NWRS3) in byte write
access type. NWRO to NWR3 have the same timings and protocol as NWE. In the same way,
NCS represents one of the NCS[0..5] chip select lines.

27.6.4.1 Read waveforms

32003M-AVR32-09/09

The read cycle is shown on Figure 27-9 on page 499.

The read cycle starts with the address setting on the memory address bus, i.e.:
{A[25:2], A1, A0} for 8-bit devices
{A[25:2], A1} for 16-bit devices
A[25:2] for 32-bit devices.

Figure 27-9. Standard Read Cycle

CLK_SMC

A[25:2] :::>%
|

|

|

NBSO, NBS1, |
AO, A1 :T<: I

|

|

|

NRD | L
| |

NCS | N |
| | |

D[15:0] i I / | \ |
N /
| NRDSETUP NRDPULSE | NRDIHOLD
| |
NCSRpSETUP | NCSRDPULSE | NCSROpOLD
NRDCYCLE

|4 kl
) >

*NRD waveform

The NRD signal is characterized by a setup timing, a pulse width, and a hold timing.

1. NRDSETUP: the NRD setup time is defined as the setup of address before the NRD fall-
ing edge.
2. NRDPULSE: the NRD pulse length is the time between NRD falling edge and NRD rising

Alm L 499

Y 5

3. NRDHOLD: the NRD hold time is defined as the hold time of address after the NRD ris-
ing edge.

*NCS waveform

Similarly, the NCS signal can be divided into a setup time, pulse length and hold time.

1. NCSRDSETUP: the NCS setup time is defined as the setup time of address before the
NCS falling edge.

2. NCSRDPULSE: the NCS pulse length is the time between NCS falling edge and NCS
rising edge.

3. NCSRDHOLD: the NCS hold time is defined as the hold time of address after the NCS
rising edge.

*Read cycle

The NRDCYCLE time is defined as the total duration of the read cycle, i.e., from the time where
address is set on the address bus to the point where address may change. The total read cycle
time is equal to:

NRDCYCLE = NRDSETUP + NRDPULSE + NRDHOLD
Similarly,

NRDCYCLE = NCSRDSETUP + NCSRDPULSE + NCSRDHOLD

All NRD and NCS timings are defined separately for each chip select as an integer number of
CLK_SMC cycles. To ensure that the NRD and NCS timings are coherent, the user must define
the total read cycle instead of the hold timing. NRDCYCLE implicitly defines the NRD hold time
and NCS hold time as:

NRDHOLD = NRDCYCLE - NRDSETUP - NRDPULSE

And,

NCSRDHOLD = NRDCYCLE -NCSRDSETUP - NCSRDPULSE

*Null delay setup and hold

If null setup and hold parameters are programmed for NRD and/or NCS, NRD and NCS remain
active continuously in case of consecutive read cycles in the same memory (see Figure 27-10
on page 501).

Alm L 500

32003M-AVR32-09/09 I ©

AT32AP7000

Figure 27-10. No Setup, No Hold on NRD, and NCS Read Signals

L1 | L1 | L1 | |
] | | |
A[25:2] 3)< I>< |>< I
| I |

e X X X
|

I

|

I

|

|

|

CLK_SMC

NRD

|
I
NCS |
|

2 Q

Y

>l »
rl‘ rl
|

NRDSETUP NRDPULSE NRDPULSE
I NCSRDPULSE I NCSRDPULSE I NCSRDPULSE I
I »ld »ld »l
I‘ rl‘ VI‘ rl
I NRDCYCLE I NRDCYCLE I NRDCYCLE
I I

*Null Pulse

Programming null pulse is not permitted. Pulse must be at least written to one. A null value leads
to unpredictable behavior.

27.6.4.2 Read mode

As NCS and NRD waveforms are defined independently of one other, the SMC needs to know
when the read data is available on the data bus. The SMC does not compare NCS and NRD tim-
ings to know which signal rises first. The Read Mode bit in the MODE register
(MODE.READMODE) of the corresponding chip select indicates which signal of NRD and NCS
controls the read operation.

*Read is controlled by NRD (MODE.READMODE = 1)

Figure 27-11 on page 502 shows the waveforms of a read operation of a typical asynchronous
RAM. The read data is available tpyc after the falling edge of NRD, and turns to ‘Z’ after the ris-
ing edge of NRD. In this case, the MODE.READMODE bit must be written to one (read is
controlled by NRD), to indicate that data is available with the rising edge of NRD. The SMC sam-
ples the read data internally on the rising edge of CLK_SMC that generates the rising edge of
NRD, whatever the programmed waveform of NCS may be.

Alm L 501

32003M-AVR32-09/09 I ©

AT32AP7000

Figure 27-11. READMODE = 1: Data Is Sampled by SMC Before the Rising Edge of NRD

CLK_SMC ‘ | | |
|
|
|

A[25:2]

NBSO0, NBS1, ><I
A0, A1

NRD

tpacc ; 4

|

D[15:0]

|
|
|
|
|
|
NCS :
|
|
|
|
|
[}

Data Sampling

*Read is controlled by NCS (MODE.READMODE = 0)

Figure 27-12 on page 503 shows the typical read cycle of an LCD module. The read data is valid
tpacc after the falling edge of the NCS signal and remains valid until the rising edge of NCS. Data
must be sampled when NCS is raised. In that case, the MODE.READMODE bit must be written
to zero (read is controlled by NCS): the SMC internally samples the data on the rising edge of
CML_SMC that generates the rising edge of NCS, whatever the programmed waveform of NRD
may be.

Alm L 502

32003M-AVR32-09/09 I ©

AT32AP7000

Figure 27-12. READMODE = 0: Data Is Sampled by SMC Before the Rising Edge of NCS

CLK_SMC ‘ | | |
|
|
|

A[25:2]
NBSO, NBS1, ><'

A0, A1
NRD : \

NCS

X
X

/

tpacc > 4

|
|
i
I
|
[
|
|
|
|
1
|
|
|
\
W —

D[15:0]

Data Sampling
27.6.4.3 Write waveforms

The write protocol is similar to the read protocol. It is depicted in Figure 27-13 on page 504. The
write cycle starts with the address setting on the memory address bus.

*NWE waveforms

The NWE signal is characterized by a setup timing, a pulse width and a hold timing.

1. NWESETUP: the NWE setup time is defined as the setup of address and data before the
NWE falling edge.

2. NWEPULSE: the NWE pulse length is the time between NWE falling edge and NWE ris-
ing edge.

3. NWEHOLD: the NWE hold time is defined as the hold time of address and data after the
NWE rising edge.

The NWE waveforms apply to all byte-write lines in byte write access mode: NWRO0 to NWR3.

27.6.4.4 NCS waveforms

The NCS signal waveforms in write operation are not the same that those applied in read opera-
tions, but are separately defined.

1. NCSWRSETUP: the NCS setup time is defined as the setup time of address before the
NCS falling edge.

2. NCSWRPULSE: the NCS pulse length is the time between NCS falling edge and NCS
rising edge;

3. NCSWRHOLD: the NCS hold time is defined as the hold time of address after the NCS
rising edge.

Alm L 503

32003M-AVR32-09/09 I ©

AT32AP7000

Figure 27-13. Write Cycle

CLK_SMC ‘ | | |
| | | | | | |
[I I | I I |
I : : : : : :
Al25:2] | I | | | |><
| | | | |] |
| | | | | | |
| : : : : : :
NBSO, NBS1
' ' | | | | | X
AD, A1 l I I | I I T
| I I | I I |
l ! | [[l l
we b N
1
| | | | | |
| | | | | !
NCS | | | | I |
I	: :			
: NWESE:TUP : NWEPULSE : NWEI{-IOLD :				
€ i >« >« i >				
NCE‘,WRSETUFJ ' '	'			
	NCSWRPULSE		NCSWRHQLD	
NWECYCLE I				
<€ P!

*Write cycle

The write cycle time is defined as the total duration of the write cycle, that is, from the time where
address is set on the address bus to the point where address may change. The total write cycle
time is equal to:

NWECYCLE = NWESETUP + NWEPULSE + NWEHOLD

Similarly,

NWECYCLE = NCSWRSETUP + NCSWRPULSE + NCSWRHOLD

All NWE and NCS (write) timings are defined separately for each chip select as an integer num-
ber of CLK_SMC cycles. To ensure that the NWE and NCS timings are coherent, the user must
define the total write cycle instead of the hold timing. This implicitly defines the NWE hold time
and NCS (write) hold times as:

NWEHOLD = NWECYCLE -NWESETUP - NWEPULSE

And,

NCSWRHOLD = NWECYCLE - NCSWRSETUP - NCSWRPULSE

A ||'|E|,® 504

32003M-AVR32-09/09

*Null delay setup and hold

If null setup parameters are programmed for NWE and/or NCS, NWE and/or NCS remain active
continuously in case of consecutive write cycles in the same memory (see Figure 27-14 on page
505). However, for devices that perform write operations on the rising edge of NWE or NCS,
such as SRAM, either a setup or a hold must be programmed.

Figure 27-14. Null Setup and Hold Values of NCS and NWE in Write Cycle

oo [L L LI L L]

A[25:2]

X
X

X

|
|
|
NBSO, NBS1,
A0, A1 —DK
|

NWE, 4‘\
NWEO, NWE1

X

VYRR

{

>

[
[

NCS :
[[
[[

D[15:0] I I

. X X O
: NWESETUP NWEPULSE NWEPULSE '
———— e——— le——!
[| | [
[| | [
| NCSWRSETUP | NCSWRPULSE | NCSWRPULSE |
€ p—————————————pl——————————p
[[| |
[[[|
| NWECYCLE | NWECYCLE | NWECYCLE
[
1

*Null pulse

Programming null pulse is not permitted. Pulse must be at least written to one. A null value leads
to unpredictable behavior.

27.6.4.5 Write mode

The Write Mode bit in the MODE register (MODE.WRITEMODE) of the corresponding chip
select indicates which signal controls the write operation.

*Write is controlled by NWE (MODE.WRITEMODE = 1)

Figure 27-15 on page 506 shows the waveforms of a write operation with MODE.WRITEMODE
equal to one. The data is put on the bus during the pulse and hold steps of the NWE signal. The
internal data buffers are turned out after the NWESETUP time, and until the end of the write
cycle, regardless of the programmed waveform on NCS.

Alm L 505

32003M-AVR32-09/09 I ©

AT32AP7000

Figure 27-15. WRITEMODE = 1. The Write Operation Is Controlled by NWE

CLK_SMC \ | | |
| | | | I | |
| | | | I [|
| : : : } : :
Al25:2] | | | [| 1 X
| I | |] | |
! | | | I [|
| : : : f : :
NBSO0, NBS1 D<
’ ’ | | | I [X
A0, A1 | | | | T | |
| | ! | I | |
NWE, ! ! | I | I [
NWRO, NWR1 : : : ! / : :
1
[| | I | |
| | | I |
| |/ |
NCS | : I I . [
| | | I | |
| | | } : :

D[15:0] ' < >_

eWrite is controlled by NCS (MODE.WRITEMODE = 0)

Figure 27-16 on page 506 shows the waveforms of a write operation with MODE.WRITEMODE
written to zero. The data is put on the bus during the pulse and hold steps of the NCS signal.
The internal data buffers are turned out after the NCSWRSETUP time, and until the end of the
write cycle, regardless of the programmed waveform on NWE.

Figure 27-16. WRITEMODE = 0. The Write Operation Is Controlled by NCS

A[25:2]

CLK_SMC \ | | |
|
|
|
|

NBSO0, NBS1,
A0, A1

NWE,
NWRO0, NWR1

NCS

N et o A 8

D[15:0]

T

Alm L 506

32003M-AVR32-09/09 I ©

27.6.4.6 Coding timing parameters

All timing parameters are defined for one chip select and are grouped together in one register
according to their type.

The Setup register (SETUP) groups the definition of all setup parameters:

* NRDSETUP, NCSRDSETUP, NWESETUP, and NCSWRSETUP.

The Pulse register (PULSE) groups the definition of all pulse parameters:

* NRDPULSE, NCSRDPULSE, NWEPULSE, and NCSWRPULSE.

The Cycle register (CYCLE) groups the definition of all cycle parameters:

* NRDCYCLE, NWECYCLE.
Table 27-3 on page 507 shows how the timing parameters are coded and their permitted range.

Table 27-3. Coding and Range of Timing Parameters

Permitted Range
Coded Value Number of Bits Effective Value Coded Value Effective Value
setup [5:0] 6 128 x setup[5] + setup[4:0] 0 < value < 31 128 < value < 128+31
pulse [6:0] 7 256 x pulse[6] + pulse[5:0] 0 < value <63 256 < value < 256+63
256 < value < 256+127
cycle [8:0] 9 256 x cycle[8:7] + cycle[6:0] 0 < value <127 512 < value < 512+127
768 < value < 768+127

27.64.7 Usage restriction

The SMC does not check the validity of the user-programmed parameters. If the sum of SETUP
and PULSE parameters is larger than the corresponding CYCLE parameter, this leads to unpre-
dictable behavior of the SMC.

For read operations:

Null but positive setup and hold of address and NRD and/or NCS can not be guaranteed at the
memory interface because of the propagation delay of theses signals through external logic and
pads. If positive setup and hold values must be verified, then it is strictly recommended to pro-
gram non-null values so as to cover possible skews between address, NCS and NRD signals.

For write operations:

If a null hold value is programmed on NWE, the SMC can guarantee a positive hold of address,
byte select lines, and NCS signal after the rising edge of NWE. This is true if the MODE.WRITE-
MODE bit is written to one. See Section 27.6.5.2.

For read and write operations: a null value for pulse parameters is forbidden and may lead to
unpredictable behavior.

In read and write cycles, the setup and hold time parameters are defined in reference to the
address bus. For external devices that require setup and hold time between NCS and NRD sig-
nals (read), or between NCS and NWE signals (write), these setup and hold times must be
converted into setup and hold times in reference to the address bus.

Alm L 507

32003M-AVR32-09/09 I ©

27.6.5

27.6.5.1

27.6.5.2

32003M-AVR32-09/09

Automatic Wait States

Under certain circumstances, the SMC automatically inserts idle cycles between accesses to
avoid bus contention or operation conflict.

Chip select wait states

The SMC always inserts an idle cycle between two transfers on separate chip selects. This idle
cycle ensures that there is no bus contention between the deactivation of one device and the
activation of the next one.

During chip select wait state, all control lines are turned inactive: NBSO to NBS3, NWRO to
NWRS, NCSJ0..5], NRD lines are all set to high level.

Figure 27-17 on page 508 illustrates a chip select wait state between access on Chip Select 0
(NCSO0) and Chip Select 2 (NCS2).

Figure 27-17. Chip Select Wait State Between a Read Access on NCS0 and a Write Access on
NCS2

B

CLK_SMC l | | | | | |
|

X
X

\[25:2]

|

|

}

|

| 1
| |

| |

NBS1, |
o, G
| |

NRD _4_______k\\—————k//

S i

| |
| |
NWE | ! !
| | | _____(//_
| | |
NCSO | ' : ! !
| AN | | |
NCSa | | | | |
| | I | |
| | | I\\ | V//_
| NRDCYCLE NWECYCLE |
i > >

e W
—ple—>/

|)
Read to Write | Chip Select
Wait State Wait State

D[15:0] < >

Early read wait state

In some cases, the SMC inserts a wait state cycle between a write access and a read access to
allow time for the write cycle to end before the subsequent read cycle begins. This wait state is
not generated in addition to a chip select wait state. The early read cycle thus only occurs
between a write and read access to the same memory device (same chip select).

‘lllll L 508

Y 5

An early read wait state is automatically inserted if at least one of the following conditions is
valid:

¢ if the write controlling signal has no hold time and the read controlling signal has no setup time
(Figure 27-18 on page 509).

* in NCS write controlled mode (MODE.WRITEMODE = 0), if there is no hold timing on the NCS
signal and the NCSRDSETUP parameter is set to zero, regardless of the read mode (Figure
27-19 on page 510). The write operation must end with a NCS rising edge. Without an early
read wait state, the write operation could not complete properly.

* in NWE controlled mode (MODE.WRITEMODE = 1) and if there is no hold timing (NWEHOLD
= 0), the feedback of the write control signal is used to control address, data, chip select, and
byte select lines. If the external write control signal is not inactivated as expected due to load
capacitances, an early read wait state is inserted and address, data and control signals are
maintained one more cycle. See Figure 27-20 on page 511.

Figure 27-18. Early Read Wait State: Write with No Hold Followed by Read with No Setup.

|
- |
CLK_SMC | | | L] |

I | | | | :
I I I I I |

! . i | .

Al25:2] , X X ! ™

[| i |]
[| I | | :

| } } | 1
NBSO0, NBSH, ? |

A0, A1 >|< : :><)|>< ! D

| | [| | :
| l] |
NWE | | | | |
l I I I I |

NRD 1 1 T |
I No hold | I |
: | : No setup |
! <:> , (|

D[15:0]
| |) :
l I | |
l I | |
l I [

* Wait state * !

Alm L 509

32003M-AVR32-09/09 I ©

AT32AP7000

Figure 27-19. Early Read Wait State: NCS Controlled Write with No Hold Followed by a Read
with No Setup.

|

CLK_SMC \ | | | L] L

| | | | | :

| | | | | |

) 1 t | 1]

Al25:2] | | :>< >|< | ™

| ! | | | :

NBSO, NBS1 ' ’ ' ’ T
vt | | |

A0, A1 DK i .><)|>< ! :>

| | | | | |

| | .

NWE : : : | |
|

| | | | | :

NRD] U AN | |

: No hold | : No setup :

D[15:0] :L\v (/ :

|

|

}
T

I Write cycle | Early Read! Read cycle |
| (WRITEMODE=0) | Wait State | (READMODE=0 or READMODE=1),

Alm L 510

32003M-AVR32-09/09 I ©

AT32AP7000

Figure 27-20. Early Read Wait State: NWE-controlled Write with No Hold Followed by a Read
with one Set-up Cycle.

cucoe [L[L[L[] |
|
|
|

A[25:2]

NBSO, NBS1, |
A0, A1 3 ,'<

Internal write controlling signal

external write controlling

|
|
i
|
|]
signal(NWE) I | | :
| | | I
: No hold : || Read setup=1 I
NRD . | > |
| | | | |
| | ;| |
[' :
| | | |
| | | |

|
| Write cycle : Early Read,) Read cycle |

27.6.5.3 Reload user configuration wait state

The user may change any of the configuration parameters by writing the SMC user interface.

When detecting that a new user configuration has been written in the user interface, the SMC
inserts a wait state before starting the next access. The so called “reload user configuration wait
state” is used by the SMC to load the new set of parameters to apply to next accesses.

The reload configuration wait state is not applied in addition to the chip select wait state. If
accesses before and after reprogramming the user interface are made to different devices (dif-
ferent chip selects), then one single chip select wait state is applied.

On the other hand, if accesses before and after writing the user interface are made to the same
device, a reload configuration wait state is inserted, even if the change does not concern the cur-
rent chip select.

eUser procedure

To insert a reload configuration wait state, the SMC detects a write access to any MODE register
of the user interface. If the user only modifies timing registers (SETUP, PULSE, CYCLE regis-
ters) in the user interface, he must validate the modification by writing the MODE register, even
if no change was made on the mode parameters.

Alm L 511

32003M-AVR32-09/09 I ©

27.6.5.4

27.6.6

27.6.6.1

*Slow clock mode transition

A reload configuration wait state is also inserted when the slow clock mode is entered or exited,
after the end of the current transfer (see Section 27.6.8).

Read to write wait state

Due to an internal mechanism, a wait cycle is always inserted between consecutive read and
write SMC accesses.

This wait cycle is referred to as a read to write wait state in this document.

This wait cycle is applied in addition to chip select and reload user configuration wait states
when they are to be inserted. See Figure 27-17 on page 508.

Data Float Wait States

Read mode

32003M-AVR32-09/09

Some memory devices are slow to release the external bus. For such devices, it is necessary to
add wait states (data float wait states) after a read access:

* before starting a read access to a different external memory.
* before starting a write access to the same device or to a different external one.

The Data Float Output Time (tpr) for each external memory device is programmed in the Data
Float Time field of the MODE register (MODE.TDFCYCLES) for the corresponding chip select.
The value of MODE.TDFCYCLES indicates the number of data float wait cycles (between 0 and
15) before the external device releases the bus, and represents the time allowed for the data
output to go to high impedance after the memory is disabled.

Data float wait states do not delay internal memory accesses. Hence, a single access to an
external memory with long tpe will not slow down the execution of a program from internal
memory.

The data float wait states management depends on the MODE.READMODE bit and the TDF
Optimization bit of the MODE register (MODE.TDFMODE) for the corresponding chip select.

Writing a one to the MODE.READMODE bit indicates to the SMC that the NRD signal is respon-
sible for turning off the tri-state buffers of the external memory device. The data float period then
begins after the rising edge of the NRD signal and lasts MODE.TDFCYCLES cycles of the
CLK_SMC clock.

When the read operation is controlled by the NCS signal (MODE.READMODE = 0), the
MODE.TDFCYCLES field gives the number of CLK_SMC cycles during which the data bus
remains busy after the rising edge of NCS.

Figure 27-21 on page 513 illustrates the data float period in NRD-controlled mode
(MODE.READMODE =1), assuming a data float period of two cycles (MODE.TDFCYCLES = 2).
Figure 27-22 on page 513 shows the read operation when controlled by NCS (MODE.READ-
MODE = 0) and the MODE.TDFCYCLES field equals to three.

Alm L 512

Y 5

=2)

Figure 27-21. TDF Period in NRD Controlled Read Access (TDFCYCLES

CLK_SMC

2 lﬁlock cycles
|

TDF

NRD controlled read operation

NRD
NCS

NBSO0, NBS1,
A0, A1

:3)

Figure 27-22. TDF Period in NCS Controlled Read Operation (TDFCYCLES

CLK_SMC

NBSO0, NBS1,
A0, A1

|

NRD

».
ld

|

|

|

|

|

ycles |

} }
|

|

3 dlock ¢

TDF

i
LY

NCS controlled read operation

NCS
D[15:0]

513

AIMEL

Y 5

32003M-AVR32-09/09

27.6.6.2

TDF optimization enabled (MODE.TDFMODE = 1)

When the MODE.TDFMODE bit is written to one (TDF optimization is enabled), the SMC takes
advantage of the setup period of the next access to optimize the number of wait states cycle to
insert.

Figure 27-23 on page 514 shows a read access controlled by NRD, followed by a write access
controlled by NWE, on Chip Select 0. Chip Select 0 has been programmed with:

NRDHOLD = 4; READMODE = 1 (NRD controlled)
NWESETUP = 3; WRITEMODE = 1 (NWE controlled)
TDFCYCLES = 6; TDFMODE = 1 (optimization enabled).

Figure 27-23. TDF Optimization: No TDF Wait States Are Inserted if the TDF Period Is over when the Next Access Begins

CLK_SMC

[
Al25:2] 3{(

NRD

NWE

NCSO0

D[15:0]

27.6.6.3

32003M-AVR32-09/09

X

:

Z
=
m
(2}
m
_|
U
1
w

A

N

>_

e

BMHNINNHEINMHY

A

|
» < >

Read access on NCS0 (NRD controlled) Read to Write Write access on NCS0 (NWE controlled)

Wait State

TDF optimization disabled (MODE.TDFMODE = 0)

When optimization is disabled, data float wait states are inserted at the end of the read transfer,
so that the data float period is ended when the second access begins. If the hold period of the
read1 controlling signal overlaps the data float period, no additional data float wait states will be
inserted.

Figure 27-24 on page 515, Figure 27-25 on page 515 and Figure 27-26 on page 516 illustrate
the cases:

* read access followed by a read access on another chip select.

Alm L 514

Y 5

* read access followed by a write access on another chip select.
¢ read access followed by a write access on the same chip select.
with no TDF optimization.

Figure 27-24. TDF Optimization Disabled (MODE.TDFMODE = 0). TDF Wait States between Two Read Accesses on Dif-
ferent Chip Selects.

Read1 controlling

csue |] | | | | | | | | | i
| | | | | |
| | | | | |
s | XK | X
| | | | | |
NBSO, NBS1, | | } |) 1
ot ! XX ! X
. |
L Reaot !

|
|
t
|
I
|
|
|
N
T
|
|
|
|
|
1
|
»l
>

|
I
|
I
|
I
|
'I1IDFCYCLES' =6

|
|
signal(NRD) : t Read1 hold = 1
< g D S
Read2 controlling : 1]] |
signal(NRD) : L : : :
I L L I I |
PUSOL X U D)) N) DI NI IV IIIIINNIIINID : =
| | | | |
: : : 5 TDF WAIT STATES : :
2 Read1 cycle ': :‘ - Read 2 cycle
TDFCYCLES = 6 D a— TDFMODE=0

(optimization disabled)
Chip Select Wait State

Figure 27-25. TDF Optimization Disabled (MODE.TDFMODE= 0). TDF Wait States between a Read and a Write Access
on Different Chip Selects.

CLK_SMC I | | | |

A[25:2] D{
|

NBSO, NBS1, !
A0, A1 >(

X
X

|
X
e

Read1 controlling
signal(NRD)

]
<
-

I
]
: Read1 h<}|d =1 Write2 setu!) =1
I l—>l ——>
Write2 controlling : : | : 1 1
signal(NWE) | 5 TDECYCLES =} R : :
I " I I ” I I
I I I I I I I
. I { { { I [
D[15:0] T /
Iy »———
] I
| | | | |
| | | | |
< > ! I e
Read1 cycle : : : 2 TDF WAIT STATES %rg;égﬁ%
TDFCYCLES = 4 =
Read to Write Chip Select (optimization disabled)

Wait State Wait State

Alm L 515

32003M-AVR32-09/09 I ©

AT32AP7000

Figure 27-26. TDF Optimization Disabled (MODE.TDFMODE = 0). TDF Wait States between Read and Write accesses on
the Same Chip Select.

CLK_SMC I |
|
|
|

A[25:2]

XX

j
e

NBSO0, NBS1,)
A0, A1 ><
Read1 controlling
signal(NRD)

1
|
|
t
|
|
|
[l
|
T
|
l T
: Write2 setup 1
|

Xk
S

I

I

[

I

I

I

Write2 controlling |
signal(NWE) :
[

[

[

[

27.6.7 External Wait

27.6.7.1 Restriction

Read1 hold = 1 | !
[—> [—
I | [L
I ' ThrFCcYCLESk= 5 I I
¢ | I > [I t
[| I I [I
| I I I I I /_I_
D[15:0 ! b L . '
s +——— 2224020000000) 7 | . :
I | I I I I I [
[| I I I I I [
I ‘I I I [I I I I
|~ > | | 4 TDF WAIT STATES, |
| Read1 cycle | € e
' TDFCYCLES = 5 < - ! Write 2 cycle
Read to Write TDFMODE=0
Wait State (optimization disabled)

Any access can be extended by an external device using the NWAIT input signal of the SMC.
The External Wait Mode field of the MODE register (MODE.EXNWMODE) on the corresponding
chip select must be written to either two (frozen mode) or three (ready mode). When the
MODE.EXNWMODE field is written to zero (disabled), the NWAIT signal is simply ignored on
the corresponding chip select. The NWAIT signal delays the read or write operation in regards to
the read or write controlling signal, depending on the read and write modes of the corresponding
chip select.

When one of the MODE.EXNWMODE is enabled, it is mandatory to program at least one hold
cycle for the read/write controlling signal. For that reason, the NWAIT signal cannot be used in
Page Mode (Section 27.6.9), or in Slow Clock Mode (Section 27.6.8).

The NWAIT signal is assumed to be a response of the external device to the read/write request
of the SMC. Then NWAIT is examined by the SMC only in the pulse state of the read or write
controlling signal. The assertion of the NWAIT signal outside the expected period has no impact
on SMC behavior.

27.6.7.2 Frozen mode

32003M-AVR32-09/09

When the external device asserts the NWAIT signal (active low), and after internal synchroniza-
tion of this signal, the SMC state is frozen, i.e., SMC internal counters are frozen, and all control
signals remain unchanged. When the synchronized NWAIT signal is deasserted, the SMC com-
pletes the access, resuming the access from the point where it was stopped. See Figure 27-27
on page 517. This mode must be selected when the external device uses the NWAIT signal to
delay the access and to freeze the SMC.

Alm L 516

Y 5

2).

The assertion of the NWAIT signal outside the expected period is ignored as illustrated in Figure

27-28 on page 518.

CLK_SMC

Figure 27-27. Write Access with NWAIT Assertion in Frozen Mode (MODE.EXNWMODE

o N4 NI S Ll/ull |||||||||||| ;
o
o
NT//
- ~
w
llnllllllII_M IIIIIIIIIIIII —r e e ————— ——
T
@ o~
> -
i
o
(]
PR S E) % N S S — - __ Qo
- ~ k)
3
PR E S R . AVOU RO R b
v//
- o~ /\
N ™
® <
< 0
©
.Y _ ~ 1 ____ b 4
— %) — [
S ¢ 8 3 g
N W =z = W
<< z () =z

NBSO, NBS1,
A0, A1

Internally synchronized
NWAIT signal

517

2 (Frozen)
7

5

NWEPULSE
NCSWRPULSE

EXNWMODE
WRITEMODE = 1 (NWE controlled)

Y 5

AIMEL

32003M-AVR32-09/09

=2).

Figure 27-28. Read Access with NWAIT Assertion in Frozen Mode (MODE.EXNWMODE

CLK_SMC

Iz U O
o o
o~ o~
o [sp]
- <
I//
_.__IL I](/
o~
< ©
()]
-t -2 e, | — —
w
N
@]
[he N [To}
L
— |
o~ 0
o o
< -

- (%] @] =
) 14 <
pz4 z =

b4

NBSO0, NBS1
A0, A1

Internally synchronized
NWAIT signal

Read cycle

2 (Frozen)

EXNWMODE

0 (NCS controlled)

READMODE

Assertion is ignored

6

5, NCSRDHOLD

=2, NRDHOLD

NRDPULSE

=3

NCSRDPULSE

518

AIMEL

Y 5

32003M-AVR32-09/09

27.6.7.3 Ready mode

In Ready mode (MODE.EXNWMODE = 3), the SMC behaves differently. Normally, the SMC
begins the access by down counting the setup and pulse counters of the read/write controlling
signal. In the last cycle of the pulse phase, the resynchronized NWAIT signal is examined.

If asserted, the SMC suspends the access as shown in Figure 27-29 on page 519 and Figure
27-30 on page 520. After deassertion, the access is completed: the hold step of the access is
performed.

This mode must be selected when the external device uses deassertion of the NWAIT signal to
indicate its ability to complete the read or write operation.

If the NWAIT signal is deasserted before the end of the pulse, or asserted after the end of the
pulse of the controlling read/write signal, it has no impact on the access length as shown in Fig-
ure 27-30 on page 520.

Figure 27-29. NWAIT Assertion in Write Access: Ready Mode (MODE.EXNWMODE = 3).

CLK_SMC

A[25:2]

NBSO0, NBS1,
A0, A1

NWE

NCS

D[15:0]

NWAIT

Internally synchronized
NWAIT signal

32003M-AVR32-09/09

Ve
i

L e
N —— —
R —
: : : : : :ﬁngNSTA':[E/: i i i
//// |
—

S TN I N L S N

Write cycle

EXNWMODE = 3 (Ready mode)
WRITEMODE =1 (NWE_controlled)

NWEPULSE =5
NCSWRPULSE =7

Alm L 519

Y 5

3).

CLK_SMC

Figure 27-30. NWAIT Assertion in Read Access: Ready Mode (EXNWMODE

D

»
L
Assertion Med

-
o
——tr=-—-t- - =)
2
©
B E
€S
> O
o |
e -8
x =z
L=
LT}
W
o oB
——r-r-t1- a-96
ol =2
ol 20
8| 23
l D
hel
(0]
o
[e]
C
e
-r—-——+=--+r-r----t+---4--—g4-——-————==-———- ®
c
K]
Lol © @
%
<
[(e]

NBSO, NBS1
A0, A1

Internally synchronized
NWAIT signal

520

7

7

NRDPULSE
NCSRDPULSE

Y 5

AIMEL

32003M-AVR32-09/09

27.6.7.4 NWAIT latency and read/write timings

There may be a latency between the assertion of the read/write controlling signal and the asser-
tion of the NWAIT signal by the device. The programmed pulse length of the read/write
controlling signal must be at least equal to this latency plus the two cycles of resynchronization
plus one cycle. Otherwise, the SMC may enter the hold state of the access without detecting the
NWAIT signal assertion. This is true in frozen mode as well as in ready mode. This is illustrated
on Figure 27-31 on page 521.

When the MODE.EXNWMODE field is enabled (ready or frozen), the user must program a pulse
length of the read and write controlling signal of at least:

minimal pulse length = NWAIT latency + 2 synchronization cycles + 1 cycle

Figure 27-31. NWAIT Latency

CLK_SMC

A[25:2]

NBSO0, NBS1,
A0, A1

NRD

NWAIT

nternally synchronized
NWAIT signal

32003M-AVR32-09/09

--K7-

NN T

Wait| STATE

N

i

A

Minimal puise length

}

NWAIT latency R cycle resymchronizatio

|Read cycle

—_—_———s

A

\ 4

| |
EXNWMODE = or 3 I
READMODE = 1 (NRD controlled)
| | I

|
|
|
|
|
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
NRI!I)PULSE =5l | |

Alm L 521

Y 5

27.6.8 Slow Clock Mode

The SMC is able to automatically apply a set of “slow clock mode” read/write waveforms when
an internal signal driven by the SMC’s Power Management Controller is asserted because
CLK_SMC has been turned to a very slow clock rate (typically 32 kHz clock rate). In this mode,
the user-programmed waveforms are ignored and the slow clock mode waveforms are applied.
This mode is provided so as to avoid reprogramming the User Interface with appropriate wave-
forms at very slow clock rate. When activated, the slow mode is active on all chip selects.

27.6.8.1 Slow clock mode waveforms

Figure 27-32 on page 522 illustrates the read and write operations in slow clock mode. They are
valid on all chip selects. Table 27-4 on page 522 indicates the value of read and write parame-
ters in slow clock mode.

Figure 27-32. Read and Write Cycles in Slow Clock Mode

CLK_SMC \ | | |

|

e

| |

| | |
NBSO, NBS1, } }

;>< A0, A1 | >< I><

| | |

| | | |

|

|

|

|

|

|

1

|

|

CLK_SMC ‘ | | |
I I I [I l
| I i I
A[25:2] X I | Al25:2] | >< I DC

I I [I I

I I I I

NBSO, NBS1, f 1 f

A0, A1 I I I
I |
I |
|

| | | NRD | | |
NWE I 1 I 1

g 1
1 <>,

l——»l N
NCS _E\ ! ' Nes _i\ i |
I I

| ! | o
| NWECYCLES =3 | NRDCYCLES =2 |
|< ;| N—>
' SLOW CLOCK MODE WRITE * SLOW CLOCK MODE READ

Table 27-4. Read and Write Timing Parameters in Slow Clock Mode

Read Parameters Duration (cycles) Write Parameters Duration (cycles)
NRDSETUP 1 NWESETUP 1
NRDPULSE 1 NWEPULSE 1
NCSRDSETUP 0 NCSWRSETUP 0
NCSRDPULSE 2 NCSWRPULSE 3
NRDCYCLE 2 NWECYCLE 3

Alm L 522

32003M-AVR32-09/09 I ©

27.6.8.2 Switching from (to) slow clock mode to (from) normal mode

When switching from slow clock mode to the normal mode, the current slow clock mode transfer
is completed at high clock rate, with the set of slow clock mode parameters. See Figure 27-33
on page 523. The external device may not be fast enough to support such timings.

Figure 27-34 on page 524 illustrates the recommended procedure to properly switch from one
mode to the other.

Figure 27-33. Clock Rate Transition Occurs while the SMC is Performing a Write Operation

Slow Clock Mode
Internal signal from PM

coese [s hnhnhhnhnhs
A[25:2] :X

f
I

T

NBSO0, NBS1, :'X f
A0, A1 ' :

|

:

|
NWECYCLE = 3 '
< >< > e >

|
: NWECYCLE = 7
i

SLOW CLOCK MODE WRITE SLOW CLOCK MODE WRITIE NORMAL MODE WRITE

!
This write cycle finishes with the slow clock mode set Slow clock mode transition is detected:
of parameters after the clock rate transition Reload Configuration Wait State

AIMEL 523

32003M-AVR32-09/09 I ©

AT32AP7000

Figure 27-34. Recommended Procedure to Switch from Slow Clock Mode to Normal Mode or from Normal Mode to Slow
Clock Mode

Slow Clock Mode
Internal signal from PM |

CLK_SMC ‘ | | |

A[25:2] j(

NBSO, NBST,
A0, A1 '

H

R e

pd
(9]
w

/ |
| ! | | |
SLOW CLOCK MODE WRITE ! IDLE STATE I NORMAL MODE WRITE
I | | | !

Reload Configuration
Wait State

]

27.6.9 Asynchronous Page Mode

The SMC supports asynchronous burst reads in page mode, providing that the Page Mode
Enabled bit is written to one in the MODE register (MODE.PMEN). The page size must be con-
figured in the Page Size field in the MODE register (MODE.PS) to 4, 8, 16, or 32 bytes.

The page defines a set of consecutive bytes into memory. A 4-byte page (resp. 8-, 16-, 32-byte
page) is always aligned to 4-byte boundaries (resp. 8-, 16-, 32-byte boundaries) of memory. The
MSB of data address defines the address of the page in memory, the LSB of address define the
address of the data in the page as detailed in Table 27-5 on page 524.

With page mode memory devices, the first access to one page (t,) takes longer than the subse-
quent accesses to the page (t,,) as shown in Figure 27-35 on page 525. When in page mode,
the SMC enables the user to define different read timings for the first access within one page,
and next accesses within the page.

Table 27-5. Page Address and Data Address within a Page

Page Size Page Address(" Data Address in the Page®
4 bytes A[25:2] Al1:0]
8 bytes A[25:3] A[2:0]
16 bytes A[25:4] A[3:0]
32 bytes A[25:5] A[4:0]

Notes: 1. A denotes the address bus of the memory device
2. For 16-bit devices, the bit 0 of address is ignored. For 32-bit devices, bits [1:0] are ignored.
27.6.9.1 Protocol and timings in page mode

Figure 27-35 on page 525 shows the NRD and NCS timings in page mode access.

Alm L 524

32003M-AVR32-09/09 I ©

AT32AP7000

Figure 27-35. Page Mode Read Protocol (Address MSB and LSB Are Defined in Table 27-5 on page 524)

ewswe || L] L] | L] L]

AIMSB] :IK X
X

|

|

|

|
AILSB])<I ™

NRD

|

|

]

|

|
B N

A 4

NCS

D[15:0]

EEEECEEE« 2 XX

NCSRDPULSE NRDPULSE

»lg »ld
Y L)

I
I
|
I
I
I
|
I
I
I
L
I
I
I
I
I
I
I
I
I
I

NRDPULSE |
}l

A

The NRD and NCS signals are held low during all read transfers, whatever the programmed val-
ues of the setup and hold timings in the User Interface may be. Moreover, the NRD and NCS
timings are identical. The pulse length of the first access to the page is defined with the
PULSE.NCSRDPULSE field value. The pulse length of subsequent accesses within the page
are defined using the PULSE.NRDPULSE field value.

In page mode, the programming of the read timings is described in Table 27-6 on page 525:

Table 27-6. Programming of Read Timings in Page Mode

Parameter Value Definition

READMODE X No impact

NCSRDSETUP X No impact

NCSRDPULSE toa Access time of first access to the page
NRDSETUP X No impact

NRDPULSE tsa Access time of subsequent accesses in the page
NRDCYCLE X No impact

The SMC does not check the coherency of timings. It will always apply the NCSRDPULSE tim-
ings as page access timing (t,,) and the NRDPULSE for accesses to the page (t,,), even if the
programmed value for t . is shorter than the programmed value for t,.

27.6.9.2 Byte access type in page mode

The byte access type configuration remains active in page mode. For 16-bit or 32-bit page mode
devices that require byte selection signals, configure the MODE.BAT bit to zero (byte select
access type).

Alm L 525

32003M-AVR32-09/09 I ©

27.6.9.3 Page mode restriction

The page mode is not compatible with the use of the NWAIT signal. Using the page mode and
the NWAIT signal may lead to unpredictable behavior.

27.6.9.4 Sequential and non-sequential accesses

If the chip select and the MSB of addresses as defined in Table 27-5 on page 524 are identical,
then the current access lies in the same page as the previous one, and no page break occurs.

Using this information, all data within the same page, sequential or not sequential, are accessed
with a minimum access time (t,,). Figure 27-36 on page 526 illustrates access to an 8-bit mem-
ory device in page mode, with 8-byte pages. Access to D1 causes a page access with a long
access time (t,,). Accesses to D3 and D7, though they are not sequential accesses, only require
a short access time (tg,).

If the MSB of addresses are different, the SMC performs the access of a new page. In the same
way, if the chip select is different from the previous access, a page break occurs. If two sequen-
tial accesses are made to the page mode memory, but separated by an other internal or external
peripheral access, a page break occurs on the second access because the chip select of the
device was deasserted between both accesses.

Figure 27-36. Access to Non-sequential Data within the Same Page

ewswe | L L0 L L] L L LI L] |

32003M-AVR32-09/09

P

X

ge address

- — -+ —

A1 J‘>< A3

X

e [0 U G QU NS | [QU [
Sld e e e e e e

|

|

|

i LLLK D1) XXL E 02 XXL D7 —
L NCSRDPULSE | NRDPULSE | NRDPULSE |

Alm L 526

Y 5

27.7 User Interface

The SMC is programmed using the registers listed in Table 27-7 on page 527. For each chip select, a set of four registers
is used to program the parameters of the external device connected on it. In Table 27-7 on page 527, “CS_number”
denotes the chip select number. Sixteen bytes (0x10) are required per chip select.

The user must complete writing the configuration by writing anyone of the Mode Registers.

Table 27-7. SMC Register Memory Map

Offset Register Register Name Access Reset
0x00 + CS_number*0x10 Setup Register SETUP Read/Write 0x01010101
0x04 + CS_number*0x10 Pulse Register PULSE Read/Write 0x01010101
0x08 + CS_number*0x10 Cycle Register CYCLE Read/Write 0x00030003
0x0C + CS_number*0x10 Mode Register MODE Read/Write 0x10002103

AIMEL 527

32003M-AVR32-09/09 I ©

27.71 Setup Register

Register Name: SETUP

Access Type: Read/Write

Offset: 0x00 + CS_number*0x10

Reset Value: 0x01010101
31 30 29 28 27 26 25 24

| _ | _ | NCSRDSETUP |
23 22 21 20 19 18 17 16

| - | - | NRDSETUP |
15 14 13 12 11 10 9 8

| - | - | NCSWRSETUP |
7 6 5 4 3 2 1 0

‘ - \ - \ NWESETUP ‘

* NCSRDSETUP: NCS Setup Length in READ Access
In read access, the NCS signal setup length is defined as:

NCS Setup Length in read access = (128 x NCSRDSETUP[5] + NCSRDSETUP[4:0]) clock cycles

e NRDSETUP: NRD Setup Length
The NRD signal setup length is defined in clock cycles as:

NRD Setup Length = (128 x NRDSETUP[5] + NRDSETUP[4:0]) clock cycles

e NCSWRSETUP: NCS Setup Length in WRITE Access
In write access, the NCS signal setup length is defined as:

NCS Setup Length in write access = (128 x NCSWRSETUP[5] + NCSWRSETUP[4:0]) clock cycles

e NWESETUP: NWE Setup Length
The NWE signal setup length is defined as:

NWE Setup Length = (128 x NWESETUP[5]+ NWESETUP[4:0]) clock cycles

AIMEL 528

32003M-AVR32-09/09 I ©

27.7.2 Pulse Register

Register Name: PULSE

Access Type: Read/Write

Offset: 0x04 + CS_number*0x10

Reset Value: 0x01010101
31 30 29 28 27 26 25 24

| - | NCSRDPULSE |
23 22 21 20 19 18 17 16

‘ - ‘ NRDPULSE ‘
15 14 13 12 11 10 9 8

| - | NCSWRPULSE |
7 6 5 4 3 2 1 0

‘ _ ‘ NWEPULSE ‘

NCSRDPULSE: NCS Pulse Length in READ Access
In standard read access, the NCS signal pulse length is defined as:

NCS Pulse Length in read access = (256 x NCSRDPULSE[6] + NCSRDPULSE][5:0]) clock cycles

The NCS pulse length must be at least one clock cycle.
In page mode read access, the NCSRDPULSE field defines the duration of the first access to one page.

NRDPULSE: NRD Pulse Length
In standard read access, the NRD signal pulse length is defined in clock cycles as:

NRD Pulse Length = (256 x NRDPULSE[6] + NRDPULSE[5:0]) clock cycles

The NRD pulse length must be at least one clock cycle.
In page mode read access, the NRDPULSE field defines the duration of the subsequent accesses in the page.

NCSWRPULSE: NCS Pulse Length in WRITE Access
In write access, the NCS signal pulse length is defined as:

NCS Pulse Length in write access = (256 x NCSWRPULSE[6]+ NCSWRPULSE[5:0]) clock cycles

The NCS pulse length must be at least one clock cycle.

NWEPULSE: NWE Pulse Length
The NWE signal pulse length is defined as:

NWE Pulse Length = (256 x NWEPULSE[6] + NWEPULSE[5:0]) clock cycles

The NWE pulse length must be at least one clock cycle.

AIMEL 529

32003M-AVR32-09/09 I ©

27.7.3 Cycle Register

Register Name: CYCLE

Access Type: Read/Write

Offset: 0x08 + CS_number*0x10

Reset Value: 0x00030003
31 30 29 28 27 26 25 24

‘ _ _ _ _ _ - - NRDCYCLE[8] ‘
23 22 21 20 19 18 17 16

| NRDCYCLEJ[7:0] |
15 14 13 12 11 10 9 8

‘ - - - - - - - NWECYCLE[8] ‘
7 6 5 4 3 2 1 0

NWECYCLE[7:0]

e NRDCYCLE[8:0]: Total Read Cycle Length

The total read cycle length is the total duration in clock cycles of the read cycle. It is equal to the sum of the setup, pulse and
hold steps of the NRD and NCS signals. It is defined as:

e NWECYCLE[8:0]: Total Write Cycle Length

Read Cycle Length = (256 x NRDCYCLE[8:7]+ NRDCYCLE[6:0]) clock cycles

The total write cycle length is the total duration in clock cycles of the write cycle. It is equal to the sum of the setup, pulse and
hold steps of the NWE and NCS signals. It is defined as:

32003M-AVR32-09/09

Write Cycle Length = (256 x NWECYCLE[8:7] + NWECYCLE[6:0]) clock cycles

ATMEL

Y 5

530

27.74 Mode Register

Register Name: MODE

Access Type: Read/Write

Offset: 0x0C + CS_number*0x10

Reset Value: 0x10002103
31 30 29 28 27 26 25 24

| - | - | PS | - - - PMEN |
23 22 21 20 19 18 17 16

| _ | - | - TDFMODE | TDFCYCLES |
15 14 13 12 11 10 9 8

L - [-] DBW e -
7 6 5 4 3 2 1 0

| _ | - | EXNWMODE | - | - | WRITEMODE | READMODE |

¢ PS: Page Size
If page mode is enabled, this field indicates the size of the page in bytes.

PS Page Size

0 4-byte page
1 8-byte page
2 16-byte page
3 32-byte page

* PMEN: Page Mode Enabled
1: Asynchronous burst read in page mode is applied on the corresponding chip select.

0: Standard read is applied.

e TDFMODE: TDF Optimization
1: TDF optimization is enabled. The number of TDF wait states is optimized using the setup period of the next read/write

access.
0: TDF optimization is disabled.The number of TDF wait states is inserted before the next access begins.

e TDFCYCLES: Data Float Time
This field gives the integer number of clock cycles required by the external device to release the data after the rising edge of the

read controlling signal. The SMC always provide one full cycle of bus turnaround after the TDFCYCLES period. The external
bus cannot be used by another chip select during TDFCYCLES plus one cycles. From 0 up to 15 TDFCYCLES can be set.

AIMEL 531

32003M-AVR32-09/09 I ©

* DBW: Data Bus Width

DBW Data Bus Width
0 8-bit bus
1 16-bit bus
2 32-bit bus
3 Reserved

* BAT: Byte Access Type
This field is used only if DBW defines a 16- or 32-bit data bus.

BAT Byte Access Type

Byte select access type:
0 Write operation is controlled using NCS, NWE, NBS0, NBS1, NBS2, and NBS3
Read operation is controlled using NCS, NRD, NBS0O, NBS1, NBS2, and NBS3

Byte write access type:
1 Write operation is controlled using NCS, NWRO, NWR1, NWR2, and NWR3
Read operation is controlled using NCS and NRD

¢ EXNWMODE: External WAIT Mode
The NWAIT signal is used to extend the current read or write signal. It is only taken into account during the pulse phase of the

read and write controlling signal. When the use of NWAIT is enabled, at least one cycle hold duration must be programmed for
the read and write controlling signal.

EXNWMODE External NWAIT Mode

0 Disabled:
the NWAIT input signal is ignored on the corresponding chip select.

1 Reserved
Frozen Mode:

2 if asserted, the NWAIT signal freezes the current read or write cycle. after deassertion, the read or write cycle
is resumed from the point where it was stopped.
Ready Mode:

3 the NWAIT signal indicates the availability of the external device at the end of the pulse of the controlling read
or write signal, to complete the access. If high, the access normally completes. If low, the access is extended
until NWAIT returns high.

e WRITEMODE: Write Mode
1: The write operation is controlled by the NWE signal. If TDF optimization is enabled (TDFMODE =1), TDF wait states will be

inserted after the setup of NWE.
0: The write operation is controlled by the NCS signal. If TDF optimization is enabled (TDFMODE =1), TDF wait states will be
inserted after the setup of NCS.

AIMEL 532

32003M-AVR32-09/09 I ©

* READMODE: Read Mode

READMODE Read Access Mode

The read operation is controlled by the NCS signal.
0 If TDF are programmed, the external bus is marked busy after the rising edge of NCS.
If TDF optimization is enabled (TDFMODE = 1), TDF wait states are inserted after the setup of NCS.

The read operation is controlled by the NRD signal.
1 If TDF cycles are programmed, the external bus is marked busy after the rising edge of NRD.
If TDF optimization is enabled (TDFMODE =1), TDF wait states are inserted after the setup of NRD.

AIMEL 533

32003M-AVR32-09/09 I ©

28. SDRAM Controller (SDRAMC)

Rev: 2.0.0.3
28.1 Features

¢ 256-Mbytes address space
* Numerous configurations supported
- 2K, 4K, 8K row address memory parts
— SDRAM with two or four internal banks
— SDRAM with 16- or 32-bit data path
* Programming facilities
— Word, halfword, byte access
— Automatic page break when memory boundary has been reached
— Multibank ping-pong access
— Timing parameters specified by software
— Automatic refresh operation, refresh rate is programmable
— Automatic update of DS, TCR and PASR parameters (mobile SDRAM devices)
* Energy-saving capabilities
— Self-refresh, power-down, and deep power-down modes supported
— Supports mobile SDRAM devices
¢ Error detection
— Refresh error interrupt
* SDRAM power-up initialization by software
¢ CAS latency of one, two, and three supported
¢ Auto Precharge command not used

28.2 Overview

The SDRAM Controller (SDRAMC) extends the memory capabilities of a chip by providing the
interface to an external 16-bit or 32-bit SDRAM device. The page size supports ranges from
2048 to 8192 and the number of columns from 256 to 2048. It supports byte (8-bit), halfword (16-
bit) and word (32-bit) accesses.

The SDRAMC supports a read or write burst length of one location. It keeps track of the active
row in each bank, thus maximizing SDRAM performance, e.g., the application may be placed in
one bank and data in the other banks. So as to optimize performance, it is advisable to avoid
accessing different rows in the same bank.

The SDRAMC supports a CAS latency of one, two, or three and optimizes the read access
depending on the frequency.

The different modes available (self refresh, power-down, and deep power-down modes) mini-
mize power consumption on the SDRAM device.

AIMEL 534

32003M-AVR32-09/09 I ©

28.3 Block Diagram

Figure 28-1. SDRAM Controller Block Diagram

SDCK —»{ | sock
SDCKE
SDRAMC —)DSDCKE
Chip Select > SDCS
Memory —>|:| SDbCSs
Controller BA[1:0]
— :
SDRAMC —> _>|:|ADDR[17 161
P Interrupt RAS
< —>l RAS
CAS > —»D CAS
SDWE
Power CLK_SDRAMC SDRAMC EBI o I:I SDWE
Manager > DAM[0] MUX Logic Controller —>| ADDR[0]
pamn] —»I NWE1
Damial —>| ADDR[1]
DAM[3] —>| NWE3
SDRAMC_AI[9:0
_L— J —p —>| ADDR[11:2]
SDRAMC_A[10] I:ISDMO
SDRAMC_A[12:11]
<ﬁ 9 q' :
User Interface D[31:0] ADDR[13:14]
A < <—>|:| DATA[31:0]
Peripheral Bus i
< >
28.4 1/0 Lines Description
Table 28-1. 1/O Lines Description
Name Description Type Active Level
SDCK SDRAM Clock Output
SDCKE SDRAM Clock Enable Output High
SDCS SDRAM Chip Select Output Low
BA[1:0] Bank Select Signals Output
RAS Row Signal Output Low
CAS Column Signal Output Low
SDWE SDRAM Write Enable Output Low
DQM[3:0] Data Mask Enable Signals Output High
SDRAMC_A[12:0] Address Bus Output
D[31:0] Data Bus Input/Output

AIMEL 535

32003M-AVR32-09/09 I ©

28.5 Appl